Optimal Fourth, Eighth and Sixteenth Order Methods by Using Divided Difference Techniques and Their Basins of Attraction and Its Application
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rajni Sharma & Ashu Bahl, 2015. "An Optimal Fourth Order Iterative Method for Solving Nonlinear Equations and Its Dynamics," Journal of Complex Analysis, Hindawi, vol. 2015, pages 1-9, November.
- Sharma, Janak Raj & Arora, Himani, 2016. "A new family of optimal eighth order methods with dynamics for nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 924-933.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhanlav, T. & Chuluunbaatar, O. & Ulziibayar, V., 2017. "Generating function method for constructing new iterations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 414-423.
- Liu, Dongjie & Liu, Chein-Shan, 2022. "Two-point generalized Hermite interpolation: Double-weight function and functional recursion methods for solving nonlinear equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 317-330.
- Daniele Tommasini & David N. Olivieri, 2020. "Fast Switch and Spline Function Inversion Algorithm with Multistep Optimization and k-Vector Search for Solving Kepler’s Equation in Celestial Mechanics," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
- Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
- Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
- Janak Raj Sharma & Ioannis K. Argyros & Sunil Kumar, 2019. "Convergence Analysis of Weighted-Newton Methods of Optimal Eighth Order in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-14, February.
- Prem B. Chand & Francisco I. Chicharro & Neus Garrido & Pankaj Jain, 2019. "Design and Complex Dynamics of Potra–Pták-Type Optimal Methods for Solving Nonlinear Equations and Its Applications," Mathematics, MDPI, vol. 7(10), pages 1-21, October.
More about this item
Keywords
non-linear equation; basins of attraction; optimal order; higher order method; computational order of convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:4:p:322-:d:218542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.