IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/769257.html
   My bibliography  Save this article

Asymptotic Stability of Fractional Stochastic Neutral Differential Equations with Infinite Delays

Author

Listed:
  • R. Sakthivel
  • P. Revathi
  • N. I. Mahmudov

Abstract

We study the existence and asymptotic stability in p th moment of a mild solution to a class of nonlinear fractional neutral stochastic differential equations with infinite delays in Hilbert spaces. A set of novel sufficient conditions are derived with the help of semigroup theory and fixed point technique for achieving the required result. The uniqueness of the solution of the considered problem is also studied under suitable conditions. Finally, an example is given to illustrate the obtained theory.

Suggested Citation

  • R. Sakthivel & P. Revathi & N. I. Mahmudov, 2013. "Asymptotic Stability of Fractional Stochastic Neutral Differential Equations with Infinite Delays," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, February.
  • Handle: RePEc:hin:jnlaaa:769257
    DOI: 10.1155/2013/769257
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/769257.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/769257.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/769257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    2. Ren, Yong & He, Qian & Gu, Yuanfang & Sakthivel, R., 2018. "Mean-square stability of delayed stochastic neural networks with impulsive effects driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 56-66.
    3. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:769257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.