Mean-square stability of delayed stochastic neural networks with impulsive effects driven by G-Brownian motion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2018.07.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Sakthivel & R. Samidurai & S. M. Anthoni, 2010. "Asymptotic Stability of Stochastic Delayed Recurrent Neural Networks with Impulsive Effects," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 583-596, December.
- Ren, Yong & Hu, Lanying, 2011. "A note on the stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 580-585, May.
- Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
- Raja, R. & Zhu, Quanxin & Senthilraj, S. & Samidurai, R., 2015. "Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1050-1069.
- Gao, Fuqing, 2009. "Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3356-3382, October.
- R. Sakthivel & P. Revathi & N. I. Mahmudov, 2013. "Asymptotic Stability of Fractional Stochastic Neutral Differential Equations with Infinite Delays," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karthick, S.A. & Sakthivel, R. & Ma, Y.K. & Leelamani, A., 2020. "Observer based guaranteed cost control for Markovian jump stochastic neutral-type neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Yin, Wensheng & Cao, Jinde, 2021. "On stability of large-scale G-SDEs: A decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 388(C).
- Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
- Ren, Yong & Hu, Lanying, 2011. "A note on the stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 580-585, May.
- Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
- Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
- Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
- Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
- Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
- Ma, Li & Li, Yujing & Zhu, Quanxin, 2023. "Stability analysis for a class of stochastic delay nonlinear systems driven by G-Lévy Process," Statistics & Probability Letters, Elsevier, vol. 195(C).
- Zhengqi Ma & Hongyin Jiang & Chun Li & Defei Zhang & Xiaoyou Liu, 2024. "Stochastic Intermittent Control with Uncertainty," Mathematics, MDPI, vol. 12(13), pages 1-15, June.
- Zhang, Xuekang & Huang, Chengzhe & Deng, Shounian, 2024. "Nonparametric estimation for periodic stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 214(C).
- Yin, Wensheng & Cao, Jinde, 2021. "On stability of large-scale G-SDEs: A decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 388(C).
- Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
- Guomin Liu, 2021. "Girsanov Theorem for G-Brownian Motion: The Degenerate Case," Journal of Theoretical Probability, Springer, vol. 34(1), pages 125-140, March.
- Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
- Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
- He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
- Laurence Carassus, 2021. "Quasi-sure essential supremum and applications to finance," Papers 2107.12862, arXiv.org, revised Mar 2024.
- Xiao, Guanli & Wang, JinRong & O’Regan, Donal, 2020. "Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Criens, David & Niemann, Lars, 2024. "A class of multidimensional nonlinear diffusions with the Feller property," Statistics & Probability Letters, Elsevier, vol. 208(C).
- Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
More about this item
Keywords
Stochastic Cohen–Grossberg neural networks; G-Lyapunov–Krasovskii functional; G-Brownian motion; Mean-square exponential input-to-state stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:143:y:2018:i:c:p:56-66. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.