IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5908646.html
   My bibliography  Save this article

Laplace Transform Method for Pricing American CEV Strangles Option with Two Free Boundaries

Author

Listed:
  • Zhiqiang Zhou
  • Hongying Wu

Abstract

Laplace transform method (LTM) has a lot of applications in the evaluation of European-style options and exotic options without early exercise features. However the Laplace transform methods for pricing American options have unsatisfactory accuracy and suffer from the instability. The aim of this paper is to develop a Laplace transform method for pricing American Strangles options with the underlying asset price following the constant elasticity volatility (CEV) models. By approximating the free boundaries, the Laplace transform is taken on a fixed space region to replace the moving boundaries space. After solving the linear system in Laplace space, Gaver-Stehfest formula (GSF) and hyperbola contour integral method (HCIM) are applied to compute the Laplace inversion. Numerical results show that the LTM-HCIM outperform the LTM-GSF in regard to the accuracy and stability for the option values.

Suggested Citation

  • Zhiqiang Zhou & Hongying Wu, 2018. "Laplace Transform Method for Pricing American CEV Strangles Option with Two Free Boundaries," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-12, September.
  • Handle: RePEc:hin:jnddns:5908646
    DOI: 10.1155/2018/5908646
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/5908646.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2018/5908646.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/5908646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    2. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    3. Artur Sepp, 2004. "Analytical Pricing Of Double-Barrier Options Under A Double-Exponential Jump Diffusion Process: Applications Of Laplace Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 151-175.
    4. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    5. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    6. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    7. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    8. Song-Ping Zhu, 2006. "A New Analytical Approximation Formula For The Optimal Exercise Boundary Of American Put Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(07), pages 1141-1177.
    9. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    10. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    2. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    3. Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
    4. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    5. Daniel Hackmann, 2017. "Analytic techniques for option pricing under a hyperexponential L\'{e}vy model," Papers 1705.05934, arXiv.org.
    6. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    7. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    8. Cristina Viegas & José Azevedo-Pereira, 2020. "A Quasi-Closed-Form Solution for the Valuation of American Put Options," IJFS, MDPI, vol. 8(4), pages 1-16, October.
    9. Jin-Yu Zhang & Wen-Bo Wu & Yong Li & Zhu-Sheng Lou, 2021. "Pricing Exotic Option Under Jump-Diffusion Models by the Quadrature Method," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 867-884, October.
    10. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    11. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    12. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    13. Tomas Bokes, 2010. "A unified approach to determining the early exercise boundary position at expiry for American style of general class of derivatives," Papers 1012.0348, arXiv.org, revised Mar 2011.
    14. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    15. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    16. Oleg Kudryavtsev & Sergei Levendorskiǐ, 2009. "Fast and accurate pricing of barrier options under Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 531-562, September.
    17. Ning Cai & Xuewei Yang, 2021. "A Computational Approach to First Passage Problems of Reflected Hyperexponential Jump Diffusion Processes," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 216-229, January.
    18. Xindan Li & Dan Tang & Yongjin Wang & Xuewei Yang, 2014. "Optimal processing rate and buffer size of a jump-diffusion processing system," Annals of Operations Research, Springer, vol. 217(1), pages 319-335, June.
    19. Franck Moraux, 2009. "On perpetual American strangles," Post-Print halshs-00393811, HAL.
    20. Kimura, Toshikazu, 2010. "Valuing continuous-installment options," European Journal of Operational Research, Elsevier, vol. 201(1), pages 222-230, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5908646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.