IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/3481869.html
   My bibliography  Save this article

Opportunity Loss Minimization and Newsvendor Behavior

Author

Listed:
  • Xinsheng Xu
  • Hong Yan
  • Chi Kin Chan

Abstract

To study the decision bias in newsvendor behavior, this paper introduces an opportunity loss minimization criterion into the newsvendor model with backordering. We apply the Conditional Value-at-Risk (CVaR) measure to hedge against the potential risks from newsvendor’s order decision. We obtain the optimal order quantities for a newsvendor to minimize the expected opportunity loss and CVaR of opportunity loss. It is proven that the newsvendor’s optimal order quantity is related to the density function of market demand when the newsvendor exhibits risk-averse preference, which is inconsistent with the results in Schweitzer and Cachon (2000). The numerical example shows that the optimal order quantity that minimizes CVaR of opportunity loss is bigger than expected profit maximization (EPM) order quantity for high-profit products and smaller than EPM order quantity for low-profit products, which is different from the experimental results in Schweitzer and Cachon (2000). A sensitivity analysis of changing the operation parameters of the two optimal order quantities is discussed. Our results confirm that high return implies high risk, while low risk comes with low return. Based on the results, some managerial insights are suggested for the risk management of the newsvendor model with backordering.

Suggested Citation

  • Xinsheng Xu & Hong Yan & Chi Kin Chan, 2017. "Opportunity Loss Minimization and Newsvendor Behavior," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-11, April.
  • Handle: RePEc:hin:jnddns:3481869
    DOI: 10.1155/2017/3481869
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/3481869.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/3481869.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/3481869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xinsheng & Ji, Ping & Sang, Shuming, 2023. "Supply option purchasing decisions via mismatch cost minimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 260-280.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:3481869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.