IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/101874.html
   My bibliography  Save this article

Hopf Bifurcation of an SIQR Computer Virus Model with Time Delay

Author

Listed:
  • Zizhen Zhang
  • Huizhong Yang

Abstract

A delayed SIQR computer virus model is considered. It has been observed that there exists a critical value of delay for the stability of virus prevalence by choosing the delay as a bifurcation parameter. Furthermore, the properties of the Hopf bifurcation such as direction and stability are investigated by using the normal form method and center manifold theory. Finally, some numerical simulations for supporting our theoretical results are also performed.

Suggested Citation

  • Zizhen Zhang & Huizhong Yang, 2015. "Hopf Bifurcation of an SIQR Computer Virus Model with Time Delay," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, January.
  • Handle: RePEc:hin:jnddns:101874
    DOI: 10.1155/2015/101874
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/101874.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/101874.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/101874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Dong & Xiaofeng Liao & Huaqing Li, 2012. "Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-16, April.
    2. Ren, Jianguo & Yang, Xiaofan & Yang, Lu-Xing & Xu, Yonghong & Yang, Fanzhou, 2012. "A delayed computer virus propagation model and its dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 45(1), pages 74-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Yang, 2021. "Modeling COVID-19 Pandemic with Hierarchical Quarantine and Time Delay," Dynamic Games and Applications, Springer, vol. 11(4), pages 892-914, December.
    2. Chen, Lijuan & Hattaf, Khalid & Sun, Jitao, 2015. "Optimal control of a delayed SLBS computer virus model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 244-250.
    3. Yonghong Xu & Jianguo Ren, 2016. "Propagation Effect of a Virus Outbreak on a Network with Limited Anti-Virus Ability," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    4. Zizhen Zhang & Soumen Kundu & Ruibin Wei, 2019. "A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    5. Dubey, Ved Prakash & Kumar, Rajnesh & Kumar, Devendra, 2020. "A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    7. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Chenquan Gan & Xiaofan Yang & Wanping Liu & Qingyi Zhu & Xulong Zhang, 2012. "Propagation of Computer Virus under Human Intervention: A Dynamical Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-8, July.
    9. Yang, Lu-Xing & Draief, Moez & Yang, Xiaofan, 2016. "The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 403-415.
    10. Wang, Feifei & Chen, Diyi & Xu, Beibei & Zhang, Hao, 2016. "Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 329-338.
    11. Hu, Zhixing & Wang, Hongwei & Liao, Fucheng & Ma, Wanbiao, 2015. "Stability analysis of a computer virus model in latent period," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 20-28.
    12. Zizhen Zhang & Fangfang Yang & Wanjun Xia, 2019. "Hopf Bifurcation Analysis of a Synthetic Drug Transmission Model with Time Delays," Complexity, Hindawi, vol. 2019, pages 1-17, November.
    13. Xueying Shi & An Luo & Xiaoping Chen & Ying Huang & Chengdai Huang & Xin Yin, 2024. "The Dynamical Behaviors of a Fractional-Order Malware Propagation Model in Information Networks," Mathematics, MDPI, vol. 12(23), pages 1-12, December.
    14. Yang, Lu-Xing & Yang, Xiaofan, 2013. "The effect of infected external computers on the spread of viruses: A compartment modeling study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6523-6535.
    15. Yang, Wenbin & Li, Danqing & Chang, Xin, 2024. "Analysis and numerical simulation of computer virus propagation model based on limited resources," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 494-508.
    16. Yang, Lu-Xing & Yang, Xiaofan, 2014. "The spread of computer viruses over a reduced scale-free network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 173-184.
    17. Hu Zhang & Anwar Zeb & Aying Wan & Zizhen Zhang, 2022. "Bifurcation Analysis of a Synthetic Drug Transmission Model with Two Time Delays," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:101874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.