IDEAS home Printed from https://ideas.repec.org/a/hin/jjopti/4529836.html
   My bibliography  Save this article

Modelling of Hydrothermal Unit Commitment Coordination Using Efficient Metaheuristic Algorithm: A Hybridized Approach

Author

Listed:
  • Suman Sutradhar
  • Nalin B. Dev Choudhury
  • Nidul Sinha

Abstract

In this paper, a novel approach of hybridization of two efficient metaheuristic algorithms is proposed for energy system analysis and modelling based on a hydro and thermal based power system in both single and multiobjective environment. The scheduling of hydro and thermal power is modelled descriptively including the handling method of various practical nonlinear constraints. The main goal for the proposed modelling is to minimize the total production cost (which is highly nonlinear and nonconvex problem) and emission while satisfying involved hydro and thermal unit commitment limitations. The cascaded hydro reservoirs of hydro subsystem and intertemporal constraints regarding thermal units along with nonlinear nonconvex, mixed-integer mixed-binary objective function make the search space highly complex. To solve such a complicated system, a hybridization of Gray Wolf Optimization and Artificial Bee Colony algorithm, that is, h -ABC/GWO, is used for better exploration and exploitation in the multidimensional search space. Two different test systems are used for modelling and analysis. Experimental results demonstrate the superior performance of the proposed algorithm as compared to other recently reported ones in terms of convergence and better quality of solutions.

Suggested Citation

  • Suman Sutradhar & Nalin B. Dev Choudhury & Nidul Sinha, 2016. "Modelling of Hydrothermal Unit Commitment Coordination Using Efficient Metaheuristic Algorithm: A Hybridized Approach," Journal of Optimization, Hindawi, vol. 2016, pages 1-14, December.
  • Handle: RePEc:hin:jjopti:4529836
    DOI: 10.1155/2016/4529836
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/7179/2016/4529836.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/7179/2016/4529836.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/4529836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    2. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    3. Yıldıran, Uğur, 2023. "Robust multi-stage economic dispatch with renewable generation and storage," European Journal of Operational Research, Elsevier, vol. 309(2), pages 890-909.
    4. Timo Lohmann & Michael R. Bussieck & Lutz Westermann & Steffen Rebennack, 2021. "High-Performance Prototyping of Decomposition Methods in GAMS," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 34-50, January.
    5. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    6. Huang, Zhouchun & Zheng, Qipeng Phil, 2020. "A multistage stochastic programming approach for preventive maintenance scheduling of GENCOs with natural gas contract," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1036-1051.
    7. Lara, Cristiana L. & Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Grossmann, Ignacio E., 2018. "Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1037-1054.
    8. D. Khastieva & M. R. Hesamzadeh & I. Vogelsang & J. Rosellón, 2020. "Transmission Network Investment Using Incentive Regulation: A Disjunctive Programming Approach," Networks and Spatial Economics, Springer, vol. 20(4), pages 1029-1068, December.
    9. Charles Gauvin & Erick Delage & Michel Gendreau, 2018. "A successive linear programming algorithm with non-linear time series for the reservoir management problem," Computational Management Science, Springer, vol. 15(1), pages 55-86, January.
    10. Martin N. Hjelmeland & Arild Helseth & Magnus Korpås, 2019. "Medium-Term Hydropower Scheduling with Variable Head under Inflow, Energy and Reserve Capacity Price Uncertainty," Energies, MDPI, vol. 12(1), pages 1-15, January.
    11. Er-Rahmadi, Btissam & Ma, Tiejun, 2022. "Data-driven mixed-Integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems," European Journal of Operational Research, Elsevier, vol. 303(1), pages 337-353.
    12. López-Ramos, Francisco & Nasini, Stefano & Sayed, Mohamed H., 2020. "An integrated planning model in centralized power systems," European Journal of Operational Research, Elsevier, vol. 287(1), pages 361-377.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjopti:4529836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.