IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/8175935.html
   My bibliography  Save this article

High-Order Iterative Methods for the DMP Inverse

Author

Listed:
  • Xiaoji Liu
  • Naping Cai

Abstract

We investigate two iterative methods for computing the DMP inverse. The necessary and sufficient conditions for convergence of our schemes are considered and the error estimate is also derived. Numerical examples are given to test the accuracy and effectiveness of our methods.

Suggested Citation

  • Xiaoji Liu & Naping Cai, 2018. "High-Order Iterative Methods for the DMP Inverse," Journal of Mathematics, Hindawi, vol. 2018, pages 1-6, May.
  • Handle: RePEc:hin:jjmath:8175935
    DOI: 10.1155/2018/8175935
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JMATH/2018/8175935.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JMATH/2018/8175935.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8175935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pan, V.Y. & Soleymani, F. & Zhao, L., 2018. "An efficient computation of generalized inverse of a matrix," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 89-101.
    2. Deng, Chunyuan & Yu, Anqi, 2015. "Relationships between DMP relation and some partial orders," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 41-53.
    3. Kyrchei, Ivan, 2017. "Weighted singular value decomposition and determinantal representations of the quaternion weighted Moore–Penrose inverse," Applied Mathematics and Computation, Elsevier, vol. 309(C), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khosro Sayevand & Ahmad Pourdarvish & José A. Tenreiro Machado & Raziye Erfanifar, 2021. "On the Calculation of the Moore–Penrose and Drazin Inverses: Application to Fractional Calculus," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    2. Cordero, Alicia & Soto-Quiros, Pablo & Torregrosa, Juan R., 2021. "A general class of arbitrary order iterative methods for computing generalized inverses," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Ma, Haifeng & Gao, Xiaoshuang & Stanimirović, Predrag S., 2020. "Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    4. Stanimirović, Predrag S. & Mosić, Dijana & Wei, Yimin, 2022. "Generalizations of composite inverses with certain image and/or kernel," Applied Mathematics and Computation, Elsevier, vol. 428(C).
    5. Mosić, Dijana & Stanimirović, Predrag S. & Katsikis, Vasilios N., 2021. "Weighted composite outer inverses," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    6. Mosić, Dijana & Zhang, Daochang & Stanimirović, Predrag S., 2024. "An extension of the MPD and MP weak group inverses," Applied Mathematics and Computation, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Haifeng & Gao, Xiaoshuang & Stanimirović, Predrag S., 2020. "Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    2. Mosić, Dijana & Stanimirović, Predrag S., 2021. "Representations for the weak group inverse," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    3. Kansal, Munish & Kumar, Sanjeev & Kaur, Manpreet, 2022. "An efficient matrix iteration family for finding the generalized outer inverse," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Khosro Sayevand & Ahmad Pourdarvish & José A. Tenreiro Machado & Raziye Erfanifar, 2021. "On the Calculation of the Moore–Penrose and Drazin Inverses: Application to Fractional Calculus," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    5. Mosić, Dijana & Stanimirović, Predrag S., 2022. "Expressions and properties of weak core inverse," Applied Mathematics and Computation, Elsevier, vol. 415(C).
    6. Munish Kansal & Manpreet Kaur & Litika Rani & Lorentz Jäntschi, 2023. "A Cubic Class of Iterative Procedures for Finding the Generalized Inverses," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
    7. Chein-Shan Liu & Chung-Lun Kuo & Chih-Wen Chang, 2024. "Matrix Pencil Optimal Iterative Algorithms and Restarted Versions for Linear Matrix Equation and Pseudoinverse," Mathematics, MDPI, vol. 12(11), pages 1-31, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:8175935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.