IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1761-d1409467.html
   My bibliography  Save this article

Matrix Pencil Optimal Iterative Algorithms and Restarted Versions for Linear Matrix Equation and Pseudoinverse

Author

Listed:
  • Chein-Shan Liu

    (Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan)

  • Chung-Lun Kuo

    (Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan)

  • Chih-Wen Chang

    (Department of Mechanical Engineering, National United University, Miaoli 36063, Taiwan)

Abstract

We derive a double-optimal iterative algorithm (DOIA) in an m -degree matrix pencil Krylov subspace to solve a rectangular linear matrix equation. Expressing the iterative solution in a matrix pencil and using two optimization techniques, we determine the expansion coefficients explicitly, by inverting an m × m positive definite matrix. The DOIA is a fast, convergent, iterative algorithm. Some properties and the estimation of residual error of the DOIA are given to prove the absolute convergence. Numerical tests demonstrate the usefulness of the double-optimal solution (DOS) and DOIA in solving square or nonsquare linear matrix equations and in inverting nonsingular square matrices. To speed up the convergence, a restarted technique with frequency m is proposed, namely, DOIA(m); it outperforms the DOIA. The pseudoinverse of a rectangular matrix can be sought using the DOIA and DOIA(m). The Moore–Penrose iterative algorithm (MPIA) and MPIA(m) based on the polynomial-type matrix pencil and the optimized hyperpower iterative algorithm OHPIA(m) are developed. They are efficient and accurate iterative methods for finding the pseudoinverse, especially the MPIA(m) and OHPIA(m).

Suggested Citation

  • Chein-Shan Liu & Chung-Lun Kuo & Chih-Wen Chang, 2024. "Matrix Pencil Optimal Iterative Algorithms and Restarted Versions for Linear Matrix Equation and Pseudoinverse," Mathematics, MDPI, vol. 12(11), pages 1-31, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1761-:d:1409467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1761/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1761/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, V.Y. & Soleymani, F. & Zhao, L., 2018. "An efficient computation of generalized inverse of a matrix," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 89-101.
    2. Cordero, Alicia & Soto-Quiros, Pablo & Torregrosa, Juan R., 2021. "A general class of arbitrary order iterative methods for computing generalized inverses," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. R. H. AL-Obaidi & M. T. Darvishi & Predrag S. Stanimirović, 2022. "A Comparative Study on Qualification Criteria of Nonlinear Solvers with Introducing Some New Ones," Journal of Mathematics, Hindawi, vol. 2022, pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chein-Shan Liu & Essam R. El-Zahar & Chih-Wen Chang, 2024. "Optimal Combination of the Splitting–Linearizing Method to SSOR and SAOR for Solving the System of Nonlinear Equations," Mathematics, MDPI, vol. 12(12), pages 1-24, June.
    2. Kansal, Munish & Kumar, Sanjeev & Kaur, Manpreet, 2022. "An efficient matrix iteration family for finding the generalized outer inverse," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Khosro Sayevand & Ahmad Pourdarvish & José A. Tenreiro Machado & Raziye Erfanifar, 2021. "On the Calculation of the Moore–Penrose and Drazin Inverses: Application to Fractional Calculus," Mathematics, MDPI, vol. 9(19), pages 1-23, October.
    4. Ma, Haifeng & Gao, Xiaoshuang & Stanimirović, Predrag S., 2020. "Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    5. Xiaoji Liu & Naping Cai, 2018. "High-Order Iterative Methods for the DMP Inverse," Journal of Mathematics, Hindawi, vol. 2018, pages 1-6, May.
    6. Dijana Mosić & Predrag S. Stanimirović & Spyridon D. Mourtas, 2023. "Minimal Rank Properties of Outer Inverses with Prescribed Range and Null Space," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1761-:d:1409467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.