IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8816250.html
   My bibliography  Save this article

State of Charge Estimation of Composite Energy Storage Systems with Supercapacitors and Lithium Batteries

Author

Listed:
  • Kai Wang
  • Chunli Liu
  • Jianrui Sun
  • Kun Zhao
  • Licheng Wang
  • Jinyan Song
  • Chongxiong Duan
  • Liwei Li
  • Dan Selistean

Abstract

This paper studies the state of charge (SOC) estimation of supercapacitors and lithium batteries in the hybrid energy storage system of electric vehicles. According to the energy storage principle of the electric vehicle composite energy storage system, the circuit models of supercapacitors and lithium batteries were established, respectively, and the model parameters were identified online using the recursive least square (RLS) method and Kalman filtering (KF) algorithm. Then, the online estimation of SOC was completed based on the Kalman filtering algorithm and unscented Kalman filtering algorithm. Finally, the experimental platform for SOC estimation was built and Matlab was used for calculation and analysis. The experimental results showed that the SOC estimation results reached a high accuracy, and the variation range of estimation error was [−0.94%, 0.34%]. For lithium batteries, the recursive least square method is combined with the 2RC model to obtain the optimal result, and the estimation error is within the range of [−1.16%, 0.85%] in the case of comprehensive weighing accuracy and calculation amount. Moreover, the system has excellent robustness and high reliability.

Suggested Citation

  • Kai Wang & Chunli Liu & Jianrui Sun & Kun Zhao & Licheng Wang & Jinyan Song & Chongxiong Duan & Liwei Li & Dan Selistean, 2021. "State of Charge Estimation of Composite Energy Storage Systems with Supercapacitors and Lithium Batteries," Complexity, Hindawi, vol. 2021, pages 1-15, February.
  • Handle: RePEc:hin:complx:8816250
    DOI: 10.1155/2021/8816250
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8816250.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8816250.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8816250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chunli & Li, Qiang & Wang, Kai, 2021. "State-of-charge estimation and remaining useful life prediction of supercapacitors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    3. Li, Dezhi & Li, Shuo & Zhang, Shubo & Sun, Jianrui & Wang, Licheng & Wang, Kai, 2022. "Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine," Energy, Elsevier, vol. 250(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8816250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.