IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7190758.html
   My bibliography  Save this article

A Novel Synchronization-Based Approach for Functional Connectivity Analysis

Author

Listed:
  • Angela Lombardi
  • Sabina Tangaro
  • Roberto Bellotti
  • Alessandro Bertolino
  • Giuseppe Blasi
  • Giulio Pergola
  • Paolo Taurisano
  • Cataldo Guaragnella

Abstract

Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs) to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

Suggested Citation

  • Angela Lombardi & Sabina Tangaro & Roberto Bellotti & Alessandro Bertolino & Giuseppe Blasi & Giulio Pergola & Paolo Taurisano & Cataldo Guaragnella, 2017. "A Novel Synchronization-Based Approach for Functional Connectivity Analysis," Complexity, Hindawi, vol. 2017, pages 1-12, October.
  • Handle: RePEc:hin:complx:7190758
    DOI: 10.1155/2017/7190758
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/7190758.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/7190758.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/7190758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danielle S Bassett & Nicholas F Wymbs & M Puck Rombach & Mason A Porter & Peter J Mucha & Scott T Grafton, 2013. "Task-Based Core-Periphery Organization of Human Brain Dynamics," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo G Mattar & Michael W Cole & Sharon L Thompson-Schill & Danielle S Bassett, 2015. "A Functional Cartography of Cognitive Systems," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-26, December.
    2. Shen, Xin & Han, Yue & Li, Wenqian & Wong, Ka-Chun & Peng, Chengbin, 2021. "Finding core–periphery structures in large networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Elizabeth N Davison & Benjamin O Turner & Kimberly J Schlesinger & Michael B Miller & Scott T Grafton & Danielle S Bassett & Jean M Carlson, 2016. "Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-29, November.
    4. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7190758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.