IDEAS home Printed from https://ideas.repec.org/a/hin/complx/6979830.html
   My bibliography  Save this article

Constructing the Mandarin Phonological Network: Novel Syllable Inventory Used to Identify Schematic Segmentation

Author

Listed:
  • Karl D. Neergaard
  • Chu-Ren Huang

Abstract

The purpose of this study was to construct, measure, and identify a schematic representation of phonological processing in the tonal language Mandarin Chinese through the combination of network science and psycholinguistic tasks. Two phonological association tasks were performed with native Mandarin speakers to identify an optimal phonological annotation system. The first task served to compare two existing syllable inventories and to construct a novel system where either performed poorly. The second task validated the novel syllable inventory. In both tasks, participants were found to manipulate lexical items at each possible syllable location, but preferring to maintain whole syllables while manipulating lexical tone in their search through the mental lexicon. The optimal syllable inventory was then used as the basis of a Mandarin phonological network. Phonological edit distance was used to construct sixteen versions of the same network, which we titled phonological segmentation neighborhoods (PSNs). The sixteen PSNs were representative of every proposal to date of syllable segmentation. Syllable segmentation and whether or not lexical tone was treated as a unit both affected the PSNs’ topologies. Finally, reaction times from the second task were analyzed through a model selection procedure with the goal of identifying which of the sixteen PSNs best accounted for the mental target during the task. The identification of the tonal complex-vowel segmented PSN (C_V_C_T) was indicative of the stimuli characteristics and the choices participants made while searching through the mental lexicon. The analysis revealed that participants were inhibited by greater clustering coefficient (interconnectedness of words according to phonological similarity) and facilitated by lexical frequency. This study illustrates how network science methods add to those of psycholinguistics to give insight into language processing that was not previously attainable.

Suggested Citation

  • Karl D. Neergaard & Chu-Ren Huang, 2019. "Constructing the Mandarin Phonological Network: Novel Syllable Inventory Used to Identify Schematic Segmentation," Complexity, Hindawi, vol. 2019, pages 1-21, April.
  • Handle: RePEc:hin:complx:6979830
    DOI: 10.1155/2019/6979830
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/6979830.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/6979830.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6979830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Byron C. Jaeger & Lloyd J. Edwards & Kalyan Das & Pranab K. Sen, 2017. "An statistic for fixed effects in the generalized linear mixed model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(6), pages 1086-1105, April.
    2. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    3. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    4. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    5. Qing Cai & Marc Brysbaert, 2010. "SUBTLEX-CH: Chinese Word and Character Frequencies Based on Film Subtitles," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stella, Massimo, 2020. "Multiplex networks quantify robustness of the mental lexicon to catastrophic concept failures, aphasic degradation and ageing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    2. Luca De Benedictis & Silvia Leoni, 2020. "Gender bias in the Erasmus students network," Papers 2003.09167, arXiv.org.
    3. Goldrosen, Nicholas, 2024. "Is corrections officers' use of illegal force networked? Network structure, brokerage, and key players in the New York City Department of Correction," Journal of Criminal Justice, Elsevier, vol. 92(C).
    4. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    5. Lyócsa, Štefan & Výrost, Tomáš, 2018. "Scale-free distribution of firm-size distribution in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 501-505.
    6. Àlex Arenas & Antonio Cabrales & Leon Danon & Albert Díaz-Guilera & Roger Guimerà & Fernando Vega-Redondo, 2010. "Optimal information transmission in organizations: search and congestion," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 75-93, March.
    7. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    8. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    9. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    10. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.
    11. Rabbani, Fereshteh & Khraisha, Tamer & Abbasi, Fatemeh & Jafari, Gholam Reza, 2021. "Memory effects on link formation in temporal networks: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    12. Gabrielle Demange, 2012. "On the influence of a ranking system," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 431-455, July.
    13. Musa, Hussam & Krištofík, Peter & Medzihorský, Juraj & Klieštik, Tomáš, 2024. "The development of firm size distribution – Evidence from four Central European countries," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 98-110.
    14. Boris Salazar & María del Pilar Castillo, 2008. "Pobreza Urbana Y Exclusión Social De Los Desplazados," Documentos de Trabajo 4500, Universidad del Valle, CIDSE.
    15. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    16. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    17. Douglas R. White & Jason Owen-Smith & James Moody & Walter W. Powell, 2004. "Networks, Fields and Organizations: Micro-Dynamics, Scale and Cohesive Embeddings," Computational and Mathematical Organization Theory, Springer, vol. 10(1), pages 95-117, May.
    18. Cheng, Ranran & Peng, Mingshu & Yu, Weibin, 2014. "Pinning synchronization of delayed complex dynamical networks with nonlinear coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 426-431.
    19. Tsao, J.Y. & Boyack, K.W. & Coltrin, M.E. & Turnley, J.G. & Gauster, W.B., 2008. "Galileo's stream: A framework for understanding knowledge production," Research Policy, Elsevier, vol. 37(2), pages 330-352, March.
    20. Pier Paolo Saviotti, 2011. "Knowledge, Complexity and Networks," Chapters, in: Cristiano Antonelli (ed.), Handbook on the Economic Complexity of Technological Change, chapter 6, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:6979830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.