IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5860649.html
   My bibliography  Save this article

Dynamic Learning from Adaptive Neural Control of Uncertain Robots with Guaranteed Full-State Tracking Precision

Author

Listed:
  • Min Wang
  • Yanwen Zhang
  • Huiping Ye

Abstract

A dynamic learning method is developed for an uncertain -link robot with unknown system dynamics, achieving predefined performance attributes on the link angular position and velocity tracking errors. For a known nonsingular initial robotic condition, performance functions and unconstrained transformation errors are employed to prevent the violation of the full-state tracking error constraints. By combining two independent Lyapunov functions and radial basis function (RBF) neural network (NN) approximator, a novel and simple adaptive neural control scheme is proposed for the dynamics of the unconstrained transformation errors, which guarantees uniformly ultimate boundedness of all the signals in the closed-loop system. In the steady-state control process, RBF NNs are verified to satisfy the partial persistent excitation (PE) condition. Subsequently, an appropriate state transformation is adopted to achieve the accurate convergence of neural weight estimates. The corresponding experienced knowledge on unknown robotic dynamics is stored in NNs with constant neural weight values. Using the stored knowledge, a static neural learning controller is developed to improve the full-state tracking performance. A comparative simulation study on a 2-link robot illustrates the effectiveness of the proposed scheme.

Suggested Citation

  • Min Wang & Yanwen Zhang & Huiping Ye, 2017. "Dynamic Learning from Adaptive Neural Control of Uncertain Robots with Guaranteed Full-State Tracking Precision," Complexity, Hindawi, vol. 2017, pages 1-14, August.
  • Handle: RePEc:hin:complx:5860649
    DOI: 10.1155/2017/5860649
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/5860649.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/5860649.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5860649?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Wang & Huiping Ye & Zhiguang Chen, 2017. "Neural Learning Control of Flexible Joint Manipulator with Predefined Tracking Performance and Application to Baxter Robot," Complexity, Hindawi, vol. 2017, pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.
    2. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    3. Mourad Kchaou & Ahmed El-Hajjaji, 2017. "Resilient sliding mode control for discrete-time descriptor fuzzy systems with multiple time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(2), pages 288-301, January.
    4. Changyin Sun & Qing Wang & Yao Yu, 2017. "Robust output containment control of multi-agent systems with unknown heterogeneous nonlinear uncertainties in directed networks," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(6), pages 1173-1181, April.
    5. Hassan Ghiti Sarand & Bahram Karimi, 2016. "Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2214-2224, July.
    6. Nadja Bömmel & Guido Heineck, 2023. "Revisiting the causal effect of education on political participation and interest," Education Economics, Taylor & Francis Journals, vol. 31(6), pages 664-682, November.
    7. R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
    8. Zhang-peng Tian & Hong-yu Zhang & Jing Wang & Jian-qiang Wang & Xiao-hong Chen, 2016. "Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(15), pages 3598-3608, November.
    9. Carlos Bianchi & Pablo Galaso & Sergio Palomeque, 2020. "Invention and Collaboration Networks in Latin America: Evidence from Patent Data," Documentos de Trabajo (working papers) 20-04, Instituto de Economía - IECON.
    10. Burcu Yılmaz Kaya & Aylin Adem & Metin Dağdeviren, 2020. "A DSS-Based Novel Approach Proposition Employing Decision Techniques for System Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 413-445, March.
    11. M.V. Basin & M. Hernandez-Gonzalez, 2016. "Discrete-time filtering for nonlinear polynomial systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(9), pages 2058-2066, July.
    12. Boone, David, 2016. "New Zealand public service leaders and organisational change inception: A framework for deciding what to change," MBA Research Papers 6137, Victoria University of Wellington, School of Management.
    13. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    14. Shafi F. Al Dousari, 2019. "Transformation of Texaco and Barriers to Its Implementation," International Business Research, Canadian Center of Science and Education, vol. 12(11), pages 38-47, November.
    15. A’kif AL-FUGARA & Abdel Rahman AL-SHABEEB & Yahya AL-SHAWABKEH & Hani AL-AMOUSH & Rida AL-ADAMAT, 2018. "Simulation And Prediction Of Urban Spatial Expansion In Highly Vibrant Cities Using The Sleuth Model: A Case Study Of Amman Metropolitan, Jordan," Theoretical and Empirical Researches in Urban Management, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 13(1), pages 37-56, February.
    16. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    17. Gaddafi Abdul-Salaam & Abdul Hanan Abdullah & Mohammad Hossein Anisi & Abdullah Gani & Abdulhameed Alelaiwi, 2016. "A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 61(1), pages 159-179, January.
    18. Abdullah Almuqrin & Ibrahim Mutambik, 2021. "The explanatory power of social cognitive theory in determining knowledge sharing among Saudi faculty," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-24, March.
    19. Thomas Görzen & Dennis Kundisch, 2019. "When in Doubt Follow the Crowd: How Idea Quality Moderates the Effect of an Anchor on Idea Evaluation," Working Papers Dissertations 57, Paderborn University, Faculty of Business Administration and Economics.
    20. Francesca Maria Cesaroni & Domenico Consoli, 2015. "ICT e piccole imprese. Il Cubo della Predisposizione Tecnologica Aziendale," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2015(1), pages 73-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5860649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.