IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5184032.html
   My bibliography  Save this article

Combination Synchronization of Three Different Fractional-Order Delayed Chaotic Systems

Author

Listed:
  • Bo Li
  • Xiaobing Zhou
  • Yun Wang

Abstract

Time delay is a frequently encountered phenomenon in some practical engineering systems and introducing time delay into a system can enrich its dynamic characteristics. There has been a plenty of interesting results on fractional-order chaotic systems or integer-order delayed chaotic systems, but the problem of synchronization of fractional-order chaotic systems with time delays is in the primary stage. Combination synchronization of three different fractional-order delayed chaotic systems is investigated in this paper. It is an extension of combination synchronization of delayed chaotic systems or combination synchronization of fractional-order chaotic systems. With the help of stability theory of linear fractional-order systems with multiple time delays, we design controllers to achieve combination synchronization of three different fractional-order delayed chaotic systems. In addition, numerical simulations have been performed to demonstrate and verify the theoretical analysis.

Suggested Citation

  • Bo Li & Xiaobing Zhou & Yun Wang, 2019. "Combination Synchronization of Three Different Fractional-Order Delayed Chaotic Systems," Complexity, Hindawi, vol. 2019, pages 1-9, November.
  • Handle: RePEc:hin:complx:5184032
    DOI: 10.1155/2019/5184032
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/5184032.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/5184032.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/5184032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Lianglin & Cheng, Jun & Cao, Jinde & Liu, Zixin, 2018. "Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 672-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmoud, Emad E. & Trikha, Pushali & Jahanzaib, Lone Seth & Almaghrabi, Omar A., 2020. "Dynamical analysis and chaos control of the fractional chaotic ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Cheng, Jun & Zhou, Xia, 2020. "A multiple hierarchical structure strategy to quantized control of Markovian switching systems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    2. Shan, Yaonan & She, Kun & Zhong, Shouming & Zhong, Qishui & Shi, Kaibo & Zhao, Can, 2018. "Exponential stability and extended dissipativity criteria for generalized discrete-time neural networks with additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 145-168.
    3. de Oliveira, FĂșlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    4. Zhang, Bao-Lin & Cheng, Luhua & Pan, Kejia & Zhang, Xian-Ming, 2020. "Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    5. Liu, Duyu & Liu, Xinzhi & Chen, Hao & Zhong, Shouming, 2020. "A PAIM control scheme on hybrid system with its application on SIDO buck converter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5184032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.