IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4121926.html
   My bibliography  Save this article

Meso-Complexity Computer Simulation Investigation on Antiexplosion Performance of Double-Layer Foam Aluminum under Pore Grading

Author

Listed:
  • Zhen Wang
  • Wen Bin Gu
  • Xing Bo Xie
  • Yu Tian Chen
  • Lei Fu

Abstract

Foam aluminum is an energy-absorbing material with excellent performance. The interlayer composed of multiple layers of foam aluminum and steel plate has good antiexplosion ability. In order to explore the antiexplosion performance of double-layer foam aluminum under different porosity rankings and to reveal its microscopic deformation law and failure mechanism, three kinds of aluminum foams with a porosity of 80%, 85%, and 90% were selected to form six different structures. Based on the Voronoi algorithm, a three-dimensional foam aluminum generation algorithm with random pore size and random wall thickness was written by using the Python language and Fortran language. The three-dimensional mesoscopic model of double-layer closed-cell aluminum foam sandwich panel is established by using LS-DYNA and ABAQUS software. The explosion process was simulated, and the flow field movement of explosion shock wave of aluminum foam under different porosity rankings was analyzed. Two groups of aluminum foam were randomly selected for the explosion test and compared for the strain and compression. The test results are consistent with the simulation results, which verifies the correctness of the three-dimensional meso-model. The results show that when the porosity of the upper layer of aluminum foam is greater than that of the lower layer of aluminum foam, the sandwich structure of double-layer aluminum foam has a large compression and the bottom plate has a small displacement; it is not that the greater the compression amount of aluminum foam is, the better the antiexplosion and wave absorption ability is. When the aluminum foam reaches the ultimate load-bearing capacity, the aluminum foam transfers the load due to compaction, resulting in stress enhancement phenomena. Through the analysis of the compression amount, floor deformation, wave dissipation capacity, and energy ratio of aluminum foam, it is concluded that the antiexplosion wave absorption effect of the sandwich structure of aluminum foam with 80%/85% group is the best; the changes of porosity and cell wall are important factors affecting the energy absorption capacity of aluminum foam.

Suggested Citation

  • Zhen Wang & Wen Bin Gu & Xing Bo Xie & Yu Tian Chen & Lei Fu, 2020. "Meso-Complexity Computer Simulation Investigation on Antiexplosion Performance of Double-Layer Foam Aluminum under Pore Grading," Complexity, Hindawi, vol. 2020, pages 1-13, September.
  • Handle: RePEc:hin:complx:4121926
    DOI: 10.1155/2020/4121926
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/4121926.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/4121926.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4121926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4121926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.