IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3769817.html
   My bibliography  Save this article

Nonlinear Trajectory Controller with Improved Performances for Waveriders

Author

Listed:
  • LiuQing Yang
  • YanBin Liu
  • Yong Zhang

Abstract

This paper presents a nonlinear trajectory controller with improved performances for a general model of the waverider based on feedback linearization theory and composite nonlinear feedback (CNF) technique. First, a nonlinear controller is presented using the dynamic inversion and CNF technique for the MIMO Model, and the robust stability of the proposed controller is proved. Then, the nonlinear model is established on the basis of hypersonic aerodynamic principle, and the dynamic characteristics are analyzed accordingly, and the periodic trajectory is designed and optimized in combination with a fuel optimization problem. Furthermore, the nonlinear controller is applied to the trajectory tracking of the waverider model, and the general design steps are provided the flight controller using this nonlinear control method. Finally, an illustrative example is given to verify the effectiveness of the nonlinear controller of the waverider, and the flight performances are improved accordingly, including system stability, robustness, and tracking ability.

Suggested Citation

  • LiuQing Yang & YanBin Liu & Yong Zhang, 2019. "Nonlinear Trajectory Controller with Improved Performances for Waveriders," Complexity, Hindawi, vol. 2019, pages 1-16, March.
  • Handle: RePEc:hin:complx:3769817
    DOI: 10.1155/2019/3769817
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3769817.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3769817.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3769817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaomeng Yin & Xing Wei & Lei Liu & Yongji Wang, 2018. "Improved Hybrid Fireworks Algorithm-Based Parameter Optimization in High-Order Sliding Mode Control of Hypersonic Vehicles," Complexity, Hindawi, vol. 2018, pages 1-16, March.
    2. Chuanfeng Li & Hao Wu & Zhile Yang & Yongji Wang & Zeyu Sun, 2017. "A Novel SHLNN Based Robust Control and Tracking Method for Hypersonic Vehicle under Parameter Uncertainty," Complexity, Hindawi, vol. 2017, pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3769817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.