IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3563674.html
   My bibliography  Save this article

Neural Personalized Ranking via Poisson Factor Model for Item Recommendation

Author

Listed:
  • Yonghong Yu
  • Li Zhang
  • Can Wang
  • Rong Gao
  • Weibin Zhao
  • Jing Jiang

Abstract

Recommender systems have become indispensable for online services since they alleviate the information overload problem for users. Some work has been proposed to support the personalized recommendation by utilizing collaborative filtering to learn the latent user and item representations from implicit interactions between users and items. However, most of existing methods simplify the implicit frequency feedback to binary values, which make collaborative filtering unable to accurately learn the latent user and item features. Moreover, the traditional collaborating filtering methods generally use the linear functions to model the interactions between latent features. The expressiveness of linear functions may not be sufficient to capture the complex structure of users’ interactions and degrades the performance of those recommender systems. In this paper, we propose a neural personalized ranking model for collaborative filtering with the implicit frequency feedback. The proposed method integrates the ranking-based poisson factor model into the neural networks. Specifically, we firstly develop a ranking-based poisson factor model, which combines the poisson factor model and the Bayesian personalized ranking. This model adopts a pair-wise learning method to learn the rankings of uses’ preferences between items. After that, we propose a neural personalized ranking model on top of the ranking-based poisson factor model, named NRPFM, to capture the complex structure of user-item interactions. NRPFM applies the ranking-based poisson factor model on neural networks, which endows the linear ranking-based poisson factor model with a high level of nonlinearities. Experimental results on two real-world datasets show that our proposed method compares favorably with the state-of-the-art recommendation algorithms.

Suggested Citation

  • Yonghong Yu & Li Zhang & Can Wang & Rong Gao & Weibin Zhao & Jing Jiang, 2019. "Neural Personalized Ranking via Poisson Factor Model for Item Recommendation," Complexity, Hindawi, vol. 2019, pages 1-16, January.
  • Handle: RePEc:hin:complx:3563674
    DOI: 10.1155/2019/3563674
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3563674.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3563674.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3563674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omer Tal & Yang Liu, 2019. "A Joint Deep Recommendation Framework for Location-Based Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    2. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    3. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    4. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    5. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    6. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    7. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.
    8. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    9. Mikko Jauho & Johanna Mäkelä & Mari Niva, 2016. "Demarcating Social Practices: The Case of Weight Management," Sociological Research Online, , vol. 21(2), pages 10-22, May.
    10. Shaunak Roy, 2016. "Anatomizing the Dynamics of Societal Behaviour towards E-waste Management and Recycling Initiatives: A Case Study of Kolkata, India," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 41(1), pages 19-36, February.
    11. Cornelia Blank & Magdalena Flatscher-Thöni & Katharina Gatterer & Elisabeth Happ & Wolfgang Schobersberger & Verena Stühlinger, 2021. "Doping Sanctions in Sport: Knowledge and Perception of (Legal) Consequences of Doping—An Explorative Study in Austria," JRFM, MDPI, vol. 14(12), pages 1-18, December.
    12. Shuk Ying Ho & David Bodoff & Kar Yan Tam, 2011. "Timing of Adaptive Web Personalization and Its Effects on Online Consumer Behavior," Information Systems Research, INFORMS, vol. 22(3), pages 660-679, September.
    13. Kastner, Thomas, 2009. "Trajectories in human domination of ecosystems: Human appropriation of net primary production in the Philippines during the 20th century," Ecological Economics, Elsevier, vol. 69(2), pages 260-269, December.
    14. A. Maes & G. Poels, 2006. "Development of a user evaluations based quality model for conceptual modeling," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/406, Ghent University, Faculty of Economics and Business Administration.
    15. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    16. Johannes Hörner & Nicolas S Lambert, 2021. "Motivational Ratings [Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 1892-1935.
    17. Carl Bonham & Christopher Edmonds & James Mak, 2006. "The Impact of 9/11 and Other Terrible Global Events on Tourism in the U.S. and Hawaii," Working Papers 200602, University of Hawaii at Manoa, Department of Economics.
    18. Andemariam Senai W., 2013. "The Missed and Missing Benefits to Africa in the Absence of Harmonized International Regulation of Traditional Medicinal Knowledge," The Law and Development Review, De Gruyter, vol. 6(2), pages 29-46, August.
    19. Maxwell Kwame Boakye & Darren William Pietersen & Antoinette Kotzé & Desiré-Lee Dalton & Raymond Jansen, 2015. "Knowledge and Uses of African Pangolins as a Source of Traditional Medicine in Ghana," PLOS ONE, Public Library of Science, vol. 10(1), pages 1-14, January.
    20. Laura Muñiz-Rodríguez & Luis J. Rodríguez-Muñiz & Ángel Alsina, 2020. "Deficits in the Statistical and Probabilistic Literacy of Citizens: Effects in a World in Crisis," Mathematics, MDPI, vol. 8(11), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3563674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.