IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2386435.html
   My bibliography  Save this article

Vibration Control of an Axially Moving System with Restricted Input

Author

Listed:
  • Zhijia Zhao
  • Yonghao Ma
  • Guiyun Liu
  • Dachang Zhu
  • Guilin Wen

Abstract

In this study, we consider the global stabilization of an axially moving system under the condition of input saturation nonlinearity and external perturbation. Based on Lyapunov redesign method, observer backstepping, and high-gain observers, an output feedback control strategy with an auxiliary system is constructed to eliminate the input saturation constraint effect and suppress the string system vibration, and a boundary disturbance observer is exploited to cope with the external disturbance. The stability of the controlled system is analyzed and proven based on Lyapunov stability without simplifying or discretizing the infinite dimensional dynamics. The presented simulation results show the effectiveness of the derived control.

Suggested Citation

  • Zhijia Zhao & Yonghao Ma & Guiyun Liu & Dachang Zhu & Guilin Wen, 2019. "Vibration Control of an Axially Moving System with Restricted Input," Complexity, Hindawi, vol. 2019, pages 1-10, January.
  • Handle: RePEc:hin:complx:2386435
    DOI: 10.1155/2019/2386435
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/2386435.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/2386435.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2386435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhijie Liu & Jinkun Liu & Wei He, 2017. "Vibration control of a flexible aerial refuelling hose with input saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(5), pages 971-983, April.
    2. Bin Xu & Pengchao Zhang, 2017. "Composite Learning Sliding Mode Control of Flexible-Link Manipulator," Complexity, Hindawi, vol. 2017, pages 1-6, August.
    3. Bin Xu & Pengchao Zhang, 2017. "Minimal-Learning-Parameter Technique Based Adaptive Neural Sliding Mode Control of MEMS Gyroscope," Complexity, Hindawi, vol. 2017, pages 1-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao Guo & Yongping Pan & Tairen Sun & Yubing Zhang & Xiaohui Xiao, 2017. "Adaptive Neural Network Control of Serial Variable Stiffness Actuators," Complexity, Hindawi, vol. 2017, pages 1-9, November.
    2. Jianing Zhang & Ge Ma & Zhifu Li, 2018. "Boundary Robust Adaptive Control of a Flexible Timoshenko Manipulator," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    3. Jin-yong Ju & Yufei Liu & Honglin Kan & Chunrui Zhang, 2019. "Master-Slave Composite Vibration Control of a Mobile Flexible Manipulator via Synchronization Optimization of Observation and Feedback," Complexity, Hindawi, vol. 2019, pages 1-13, December.
    4. Min Wang & Huiping Ye & Zhiguang Chen, 2017. "Neural Learning Control of Flexible Joint Manipulator with Predefined Tracking Performance and Application to Baxter Robot," Complexity, Hindawi, vol. 2017, pages 1-14, October.
    5. Bin Xu & Pengchao Zhang, 2017. "Composite Learning Sliding Mode Control of Flexible-Link Manipulator," Complexity, Hindawi, vol. 2017, pages 1-6, August.
    6. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    7. Ren, Yong & Li, Kun & Ye, Hui, 2020. "Modeling and anti-swing control for a helicopter slung-load system," Applied Mathematics and Computation, Elsevier, vol. 372(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2386435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.