IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2380650.html
   My bibliography  Save this article

The Union between Structural and Practical Identifiability Makes Strength in Reducing Oncological Model Complexity: A Case Study

Author

Listed:
  • Maria Pia Saccomani
  • Karl Thomaseth

Abstract

Mathematical models are increasingly proposed to describe tumor’s dynamic response to treatments with the aims of improving their efficacy. The most widely used are nonlinear ODE models, whose identification is often difficult due to experimental limitations. We focus on the issue of parameter estimation in model-based oncological studies. Given their complexity, many of these models are unidentifiable having an infinite number of parameter solutions. These equivalently describe experimental data but are associated with different dynamic evolution of unmeasurable variables. We propose a joint use of two different identifiability methodologies, structural identifiability and practical identifiability , which are traditionally regarded as disjoint. This new methodology provides the number of parameter solutions, the analytic relations between the unidentifiable parameters useful to reduce model complexity, a ranking between parameters revealing the most reliable estimates, and a way to disentangle the various causes of nonidentifiability. It is implementable by using available differential algebra software and statistical packages. This methodology can constitute a powerful tool for the oncologist to discover the behavior of inaccessible variables of clinical interest and to correctly address the experimental design. A complex model to study “in vivo” antitumor activity of interleukin-21 on tumor eradication in different cancers in mice is illustrated.

Suggested Citation

  • Maria Pia Saccomani & Karl Thomaseth, 2018. "The Union between Structural and Practical Identifiability Makes Strength in Reducing Oncological Model Complexity: A Case Study," Complexity, Hindawi, vol. 2018, pages 1-10, February.
  • Handle: RePEc:hin:complx:2380650
    DOI: 10.1155/2018/2380650
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2380650.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2380650.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2380650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Devaraj Jayachandran & Ann E Rundell & Robert E Hannemann & Terry A Vik & Doraiswami Ramkrishna, 2014. "Optimal Chemotherapy for Leukemia: A Model-Based Strategy for Individualized Treatment," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-18, October.
    2. Nicolette Meshkat & Christine Er-zhen Kuo & Joseph DiStefano III, 2014. "On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lam, Nicholas N. & Docherty, Paul D. & Murray, Rua, 2022. "Practical identifiability of parametrised models: A review of benefits and limitations of various approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 202-216.
    2. Alejandro F. Villaverde, 2019. "Observability and Structural Identifiability of Nonlinear Biological Systems," Complexity, Hindawi, vol. 2019, pages 1-12, January.
    3. Hope Murphy & Gabriel McCarthy & Hana M Dobrovolny, 2020. "Understanding the effect of measurement time on drug characterization," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kocięcki, Andrzej & Kolasa, Marcin, 2023. "A solution to the global identification problem in DSGE models," Journal of Econometrics, Elsevier, vol. 236(2).
    2. Mario Castro & Rob J de Boer, 2020. "Testing structural identifiability by a simple scaling method," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-15, November.
    3. Masud M A & Md Hamidul Islam & Khondaker A. Mamun & Byul Nim Kim & Sangil Kim, 2020. "COVID-19 Transmission: Bangladesh Perspective," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    4. Alejandro F Villaverde & Antonio Barreiro & Antonis Papachristodoulou, 2016. "Structural Identifiability of Dynamic Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-22, October.
    5. Alejandro F. Villaverde, 2019. "Observability and Structural Identifiability of Nonlinear Biological Systems," Complexity, Hindawi, vol. 2019, pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2380650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.