IDEAS home Printed from https://ideas.repec.org/a/hig/ecohse/201941.html
   My bibliography  Save this article

Modeling the Probability of Credit Default of Clients of Microfinance Organizations: The Case of One MFI

Author

Listed:
  • Konstantin Polyakov

    (National Research University Higher School of Economics, Moscow, Russia)

  • Liudmila Zhukova

    (National Research University Higher School of Economics, Moscow, Russia)

Abstract

Microfinance organizations have become widespread in the crisis years, issuing microloans (up to 100000 rubles) at high interest rates almost without documents. Today, the Central Bank of Russia actively regulates this market, more and more tightening requirements, limiting rates and pennies on loans. This necessitates the formation of a new strategy for assessing the risk of non-repayment of a loan or loan, based on the prevention of delinquency on the part of customers. To do this, first, it is necessary to obtain more informative data about customers, without complicating the relationship with them. Secondly, it is necessary to have a good understanding of the possibilities of certain methods of classification in solving various problems of evaluating potential customers. The authors of this study analyze the importance for the clients classification quality of those indicators that are traditionally collected by MFIs, as well as the importance of some new indicators based on data from social networks. In this case, the importance of indicators is interpreted in the context of specific classification algorithms (methods).To model credit default (delay of more than 30 days), the authors use several algorithms for constructing classification trees – CART and C 4.5 algorithms, logistic regression and Random Forest algorithm. Modeling is carried out based on a sample of customer profiles of real MFI. Ambiguous results were obtained. Depending on the formulation of the problem of classification of customers have advantage different algorithms descriptive analysis (CART, C4.5, Logit). At the same time, as you might expect, the non-interpreted predictive algorithm “Random Forest” provides the best quality of forecasts. According to the results of the analysis, it was revealed that the credit history of the borrower, as well as his age, is of great importance for the classification of MFI clients. Gender had no impact on the classification results. In addition, data from social networks turned out to be unimportant.

Suggested Citation

  • Konstantin Polyakov & Liudmila Zhukova, 2019. "Modeling the Probability of Credit Default of Clients of Microfinance Organizations: The Case of One MFI," HSE Economic Journal, National Research University Higher School of Economics, vol. 23(4), pages 497-523.
  • Handle: RePEc:hig:ecohse:2019:4:1
    as

    Download full text from publisher

    File URL: https://ej.hse.ru/en/2019-23-4/326626661.html
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    microfinance organization; default; classification tree; logistic regression; random forest;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:ecohse:2019:4:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial board or Editorial board (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.