IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1411-d107779.html
   My bibliography  Save this article

Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective

Author

Listed:
  • Zhonghao Zhang

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
    Institute of Urban Studies, Shanghai Normal University, Shanghai 200234, China
    Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geo-Information, Wuhan University, Wuhan 430079, China
    Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 73000, China)

  • Rui Xiao

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Weixuan Yu

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Yue Liu

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Meng Lin

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Meng Wang

    (Wuhan Planning & Design Institute, Wuhan 430014, China)

Abstract

In this paper, built-up land expansion patterns and the associated factors were characterized in urban and non-urban areas across the Wen-Tai region of eastern China. Fractal dimension can be used as a reliable indicator of the complexity of built-up land form, and the increasing trend of fractal dimension indicated a more complex, dispersed pattern of built-up land in urban areas. Spatial regression models were quantitatively implemented to identify the indicators influencing the variation of fractal dimensions. Our findings suggested that the fractal dimension of built-up land forms was positively correlated to the patch density and elevation when built-up land expansion was more concentrated. Both landscape shape index and Gross Domestic Product (GDP) were positively correlated with fractal dimension in urban areas, and total edge, edge density, and connective index had impacts on fractal dimension in non-urban areas. Slope and agricultural population also showed an influence on fractal dimension. This study provided a new way for urban studies in interpreting the complex interactions between fractal dimension and related factors. The combined approach of fractal dimension and spatial analysis can provide the government planners with valuable information that can be efficiently used to realize the influences of land use policies in urban and non-urban areas.

Suggested Citation

  • Zhonghao Zhang & Rui Xiao & Weixuan Yu & Yue Liu & Meng Lin & Meng Wang, 2017. "Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1411-:d:107779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    2. M Batty & Y Xie, 1996. "Preliminary Evidence for a Theory of the Fractal City," Environment and Planning A, , vol. 28(10), pages 1745-1762, October.
    3. C J Webster, 1995. "Urban Morphological Fingerprints," Environment and Planning B, , vol. 22(3), pages 279-297, June.
    4. Isabelle Thomas & Marie-Laurence De Keersmaecker & Pierre Frankhauser, 2003. "Using fractal dimensions for characterizing intra-urban diversity. The example of Brussels," ERSA conference papers ersa03p116, European Regional Science Association.
    5. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    6. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Baibai Fu, 2023. "Spatial Heterogeneity of Urban Road Network Fractal Characteristics and Influencing Factors," Sustainability, MDPI, vol. 15(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    2. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    3. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    4. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    5. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    6. Danjie Shen & Shujing Dong, 2022. "Transition of Urban Morphology in the Mountainous Areas Since Early-Modern Times from the Perspective of Urban Historic Landscape—A GIS Tools and Historical Map Translation Approach," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    7. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    8. Bo Liu & Desheng Xue & Yiming Tan, 2019. "Deciphering the Manufacturing Production Space in Global City-Regions of Developing Countries—a Case of Pearl River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-26, December.
    9. Katrina Raynor & Severine Mayere & Tony Matthews, 2018. "Do ‘city shapers’ really support urban consolidation? The case of Brisbane, Australia," Urban Studies, Urban Studies Journal Limited, vol. 55(5), pages 1056-1075, April.
    10. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    11. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    12. Souche, Stéphanie, 2009. "Un exemple d’estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Editions NecPlus, vol. 2009(04), pages 759-779, December.
    13. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    14. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    15. Junhua Chen & Shufan Ma & Na Liu, 2023. "Multi-dimensional Housing Inequality Index: The Provincial Evidence from China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(2), pages 633-654, January.
    16. Przemysław Śleszyński & Adam Kowalewski & Tadeusz Markowski & Paulina Legutko-Kobus & Maciej Nowak, 2020. "The Contemporary Economic Costs of Spatial Chaos: Evidence from Poland," Land, MDPI, vol. 9(7), pages 1-28, July.
    17. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    18. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    19. Yu Song & Guofan Shao & Xiaodong Song & Yong Liu & Lei Pan & Hong Ye, 2017. "The Relationships between Urban Form and Urban Commuting: An Empirical Study in China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    20. Chen, Yanguang, 2014. "Urban chaos and replacement dynamics in nature and society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 373-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1411-:d:107779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.