Quantitative Analysis of the Factors Influencing Soil Heavy Metal Lateral Migration in Rainfalls Based on Geographical Detector Software: A Case Study in Huanjiang County, China
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Manoj Jha & Philip W. Gassman & Silvia Secchi & Roy Gu & Jeffrey G. Arnold, 2002. "Effect of Watershed Subdivision on SWAT Flow, Sediment, and Nutrient Predictions," Center for Agricultural and Rural Development (CARD) Publications 02-wp315, Center for Agricultural and Rural Development (CARD) at Iowa State University.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shiwei Dong & Yuchun Pan & Hui Guo & Bingbo Gao & Mengmeng Li, 2021. "Identifying Influencing Factors of Agricultural Soil Heavy Metals Using a Geographical Detector: A Case Study in Shunyi District, China," Land, MDPI, vol. 10(10), pages 1-15, September.
- Shudi Zuo & Shaoqing Dai & Yaying Li & Jianfeng Tang & Yin Ren, 2018. "Analysis of Heavy Metal Sources in the Soil of Riverbanks Across an Urbanization Gradient," IJERPH, MDPI, vol. 15(10), pages 1-23, October.
- Binh Nguyen Thi Lan & Takeshi Kobayashi & Atsushi Suetsugu & Xiaowei Tian & Takashi Kameya, 2018. "Estimating the Possibility of Surface Soil Pollution with Atmospheric Lead Deposits Using the ADMER Model," Sustainability, MDPI, vol. 10(3), pages 1-12, March.
- Liang Cheng & Long Li & Longqian Chen & Sai Hu & Lina Yuan & Yunqiang Liu & Yifan Cui & Ting Zhang, 2019. "Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period," IJERPH, MDPI, vol. 16(19), pages 1-25, September.
- Dingxuan Yan & Zhongke Bai & Xiaoyang Liu, 2020. "Heavy-Metal Pollution Characteristics and Influencing Factors in Agricultural Soils: Evidence from Shuozhou City, Shanxi Province, China," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kimberly Artita & Prakash Kaini & John Nicklow, 2013. "Examining the Possibilities: Generating Alternative Watershed-Scale BMP Designs with Evolutionary Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3849-3863, September.
- Hans Thodsen & Csilla Farkas & Jaroslaw Chormanski & Dennis Trolle & Gitte Blicher-Mathiesen & Ruth Grant & Alexander Engebretsen & Ignacy Kardel & Hans Estrup Andersen, 2017. "Modelling Nutrient Load Changes from Fertilizer Application Scenarios in Six Catchments around the Baltic Sea," Agriculture, MDPI, vol. 7(5), pages 1-17, May.
- Manish Kumar Goyal & Venkatesh K. Panchariya & Ashutosh Sharma & Vishal Singh, 2018. "Comparative Assessment of SWAT Model Performance in two Distinct Catchments under Various DEM Scenarios of Varying Resolution, Sources and Resampling Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 805-825, January.
- Pushpa Tuppad & Narayanan Kannan & Raghavan Srinivasan & Colleen Rossi & Jeffrey Arnold, 2010. "Simulation of Agricultural Management Alternatives for Watershed Protection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 3115-3144, September.
- Junyu Qi & Sheng Li & Qi Yang & Zisheng Xing & Fan-Rui Meng, 2017. "SWAT Setup with Long-Term Detailed Landuse and Management Records and Modification for a Micro-Watershed Influenced by Freeze-Thaw Cycles," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3953-3974, September.
More about this item
Keywords
soil heavy metals; lateral migration; influential factors; quantitative analysis; contribution degree; geographical detector;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:7:p:1227-:d:104572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.