Hybrid Algorithm Based on an Estimation of Distribution Algorithm and Cuckoo Search for the No Idle Permutation Flow Shop Scheduling Problem with the Total Tardiness Criterion Minimization
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
- Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
- Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
- Quan-Ke Pan & Ling Wang, 2008. "A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(3), pages 279-297.
- Baraz, Daniel & Mosheiov, Gur, 2008. "A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time," European Journal of Operational Research, Elsevier, vol. 184(2), pages 810-813, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jin Huang & Liangliang Jin & Chaoyong Zhang, 2017. "Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Perez-Gonzalez, Paz & Framinan, Jose M., 2024. "A review and classification on distributed permutation flowshop scheduling problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 1-21.
- Pan, Quan-Ke & Ruiz, Rubén, 2014. "An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem," Omega, Elsevier, vol. 44(C), pages 41-50.
- Fernando Luis Rossi & Marcelo Seido Nagano, 2022. "Beam search-based heuristics for the mixed no-idle flowshop with total flowtime criterion," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1311-1346, December.
- Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
- Lin, Shih-Wei & Ying, Kuo-Ching, 2016. "Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics," Omega, Elsevier, vol. 64(C), pages 115-125.
- Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
- Libralesso, Luc & Focke, Pablo Andres & Secardin, Aurélien & Jost, Vincent, 2022. "Iterative beam search algorithms for the permutation flowshop," European Journal of Operational Research, Elsevier, vol. 301(1), pages 217-234.
- Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
- Benavides, Alexander J. & Vera, Antony, 2022. "The reversibility property in a job-insertion tiebreaker for the permutational flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 407-421.
- Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
- Vallada, Eva & Ruiz, Rubén, 2010. "Genetic algorithms with path relinking for the minimum tardiness permutation flowshop problem," Omega, Elsevier, vol. 38(1-2), pages 57-67, February.
- Framinan, Jose M. & Perez-Gonzalez, Paz, 2015. "On heuristic solutions for the stochastic flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 246(2), pages 413-420.
- Pagnozzi, Federico & Stützle, Thomas, 2021. "Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems with additional constraints," Operations Research Perspectives, Elsevier, vol. 8(C).
- Tolga Bektaş & Alper Hamzadayı & Rubén Ruiz, 2020. "Benders decomposition for the mixed no-idle permutation flowshop scheduling problem," Journal of Scheduling, Springer, vol. 23(4), pages 513-523, August.
- Fernandez-Viagas, Victor & Molina-Pariente, Jose M. & Framinan, Jose M., 2020. "Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 858-872.
- Lobo, Fernando G. & Bazargani, Mosab & Burke, Edmund K., 2020. "A cutoff time strategy based on the coupon collector’s problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 101-114.
- Ruiz, Rubén & Pan, Quan-Ke & Naderi, Bahman, 2019. "Iterated Greedy methods for the distributed permutation flowshop scheduling problem," Omega, Elsevier, vol. 83(C), pages 213-222.
- Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
- Kuo-Ching Ying & Yi-Ju Tsai, 2017. "Minimising total cost for training and assigning multiskilled workers in production systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2978-2989, May.
- Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
More about this item
Keywords
estimation of distribution algorithm (EDA); cuckoo search (CS); HEDA_CS; no idle permutation flow shop scheduling problem (NIPFSP); total tardiness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:6:p:953-:d:100571. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.