IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i5p801-d98284.html
   My bibliography  Save this article

Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China

Author

Listed:
  • Jiashun Huang

    (School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
    Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, Oxford OX2 6ED, UK
    Environmental Change Institute, Oxford University Centre for the Environment, South Parks Road, Oxford OX1 3QY, UK
    St Antony’s College, University of Oxford, Oxford OX2 6JF, UK)

  • Weiping Li

    (School of Business, Sichuan University, Chengdu 610064, China)

  • Xijie Huang

    (School of Business, Guangdong University of Finances and Economics, Guangzhou 510320, China)

  • Lijia Guo

    (Faculty of Human, Social and Political Science, University of Cambridge, Cambridge CB2 3RQ, UK
    Downing College, University of Cambridge, Cambridge CB2 1DQ, UK)

Abstract

When developing land to meet various human needs, conducting assessments of different alternatives regarding their sustainability is critical. Among different alternatives of land-use, devoting land to bioenergy is relatively novel, in high demand, and important for addressing the energy crisis and mitigating carbon emissions. Furthermore, the competition and disputes among limited land-use for bioenergy and the combination of food production and housing are tense. Thus, which alternative of land-use is more sustainable is an important question, yet it is still under-investigated. The main purposes of this study are to investigate the merits and problems of land-use for bioenergy and to compare the relative sustainability of land-use for bioenergy, food production, and housing based on habitants’ perceptions. Multi-criteria analysis is applied to the case study in the context of China, evaluating multiple criteria in economic, environmental, and social dimensions. Therefore, this study presents a comprehensive assessment of different scenarios of land-use designed to be implemented and some implications for optimum land-use policies.

Suggested Citation

  • Jiashun Huang & Weiping Li & Xijie Huang & Lijia Guo, 2017. "Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:801-:d:98284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/5/801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/5/801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klein, Sharon J.W. & Whalley, Stephanie, 2015. "Comparing the sustainability of U.S. electricity options through multi-criteria decision analysis," Energy Policy, Elsevier, vol. 79(C), pages 127-149.
    2. Wu, Fangwei & Zhang, Deyuan & Zhang, Jinghua, 2012. "Will the development of bioenergy in China create a food security problem? Modeling with fuel ethanol as an example," Renewable Energy, Elsevier, vol. 47(C), pages 127-134.
    3. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    4. repec:fpr:2020br:14(1 is not listed on IDEAS
    5. Hazell, P.B.R. & Pachauri, J. K., 2006. "Overview: bioenergy and agriculture promises and challenges," 2020 vision briefs 14(1), International Food Policy Research Institute (IFPRI).
    6. Bolger, Fergus & Wright, George, 2017. "Use of expert knowledge to anticipate the future: Issues, analysis and directions," International Journal of Forecasting, Elsevier, vol. 33(1), pages 230-243.
    7. Billig, Eric & Thrän, Daniela, 2016. "Evaluation of biomethane technologies in Europe – Technical concepts under the scope of a Delphi-Survey embedded in a multi-criteria analysis," Energy, Elsevier, vol. 114(C), pages 1176-1186.
    8. Morimoto, Risako, 2013. "Incorporating socio-environmental considerations into project assessment models using multi-criteria analysis: A case study of Sri Lankan hydropower projects," Energy Policy, Elsevier, vol. 59(C), pages 643-653.
    9. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    10. repec:fpr:2020br:14(2 is not listed on IDEAS
    11. Clò, Stefano & Battles, Susan & Zoppoli, Pietro, 2013. "Policy options to improve the effectiveness of the EU emissions trading system: A multi-criteria analysis," Energy Policy, Elsevier, vol. 57(C), pages 477-490.
    12. Koizumi, Tatsuji, 2013. "Biofuel and food security in China and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 102-109.
    13. Sean Burkholder, 2012. "The New Ecology of Vacancy: Rethinking Land Use in Shrinking Cities," Sustainability, MDPI, vol. 4(6), pages 1-19, June.
    14. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    15. Gamper, C.D. & Turcanu, C., 2007. "On the governmental use of multi-criteria analysis," Ecological Economics, Elsevier, vol. 62(2), pages 298-307, April.
    16. Ciro Apollonio & Gabriella Balacco & Antonio Novelli & Eufemia Tarantino & Alberto Ferruccio Piccinni, 2016. "Land Use Change Impact on Flooding Areas: The Case Study of Cervaro Basin (Italy)," Sustainability, MDPI, vol. 8(10), pages 1-18, October.
    17. Fontana, Veronika & Radtke, Anna & Bossi Fedrigotti, Valérie & Tappeiner, Ulrike & Tasser, Erich & Zerbe, Stefan & Buchholz, Thomas, 2013. "Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis," Ecological Economics, Elsevier, vol. 93(C), pages 128-136.
    18. Antonovsky, Aaron, 1993. "The structure and properties of the sense of coherence scale," Social Science & Medicine, Elsevier, vol. 36(6), pages 725-733, March.
    19. de la Torre Ugarte, Daniel G., 2006. "Developing bioenergy economic and social issues: bioenergy and agriculture promises and challenges," 2020 vision briefs 14(2), International Food Policy Research Institute (IFPRI).
    20. Sinan Erzurumlu, S. & Erzurumlu, Yaman O., 2015. "Sustainable mining development with community using design thinking and multi-criteria decision analysis," Resources Policy, Elsevier, vol. 46(P1), pages 6-14.
    21. Daeryong Park & Yeonjoo Kim & Myoung-Jin Um & Sung-Uk Choi, 2015. "Robust Priority for Strategic Environmental Assessment with Incomplete Information Using Multi-Criteria Decision Making Analysis," Sustainability, MDPI, vol. 7(8), pages 1-17, July.
    22. John Western & Robert Stimson & Scott Baum & Yolanda Van GELLECUM, 2005. "Measuring community strength and social capital," Regional Studies, Taylor & Francis Journals, vol. 39(8), pages 1095-1109.
    23. Hazell, P.B.R., ed. & Pachauri, R. K., ed., 2006. "Bioenergy and agriculture: promises and challenges," 2020 vision focus 14, International Food Policy Research Institute (IFPRI).
    24. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    25. Buchholz, Thomas & Rametsteiner, Ewald & Volk, Timothy A. & Luzadis, Valerie A., 2009. "Multi Criteria Analysis for bioenergy systems assessments," Energy Policy, Elsevier, vol. 37(2), pages 484-495, February.
    26. Simone Di Zio & Mara Maretti, 2014. "Acceptability of energy sources using an integration of the Delphi method and the analytic hierarchy process," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 2973-2991, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bin & Lin, Boqiang, 2018. "Assessing the development of China's new energy industry," Energy Economics, Elsevier, vol. 70(C), pages 116-131.
    2. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    2. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    3. Dyer, George A. & Taylor, J. Edward, 2011. "The Corn Price Surge: Impacts on Rural Mexico," World Development, Elsevier, vol. 39(10), pages 1878-1887.
    4. Monteiro, Nathalia & Altman, Ira & Lahiri, Sajal, 2012. "The impact of ethanol production on food prices: The role of interplay between the U.S. and Brazil," Energy Policy, Elsevier, vol. 41(C), pages 193-199.
    5. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    6. Dal Belo Leite, João Guilherme & Justino, Flávio Barbosa & Silva, João Vasco & Florin, Madeleine J. & van Ittersum, Martin K., 2015. "Socioeconomic and environmental assessment of biodiesel crops on family farming systems in Brazil," Agricultural Systems, Elsevier, vol. 133(C), pages 22-34.
    7. Kawamoto, Carlos Tadao & Wright, James Terence Coulter & Spers, Renata Giovinazzo & de Carvalho, Daniel Estima, 2019. "Can we make use of perception of questions' easiness in Delphi-like studies? Some results from an experiment with an alternative feedback," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 296-305.
    8. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    9. Etxano, Iker & Villalba-Eguiluz, Unai, 2021. "Twenty-five years of social multi-criteria evaluation (SMCE) in the search for sustainability: Analysis of case studies," Ecological Economics, Elsevier, vol. 188(C).
    10. Thi Thanh Xuan Tran, 2016. "The Impact of Electricity Production from Renewable Sources, Nuclear Source and the Conversion of Land Use into Agricultural Land on CO2 Emissions," Working Papers halshs-01300383, HAL.
    11. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    12. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
    13. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.
    14. Tiziano Gerosa & Gianluca Argentin & Alice Spada, 2024. "What are teacher relational skills? A defining study using a bottom-up modified Delphi method," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(1), pages 581-602, February.
    15. Anissa Frini & Sarah Benamor, 2018. "Making Decisions in a Sustainable Development Context: A State-of-the-Art Survey and Proposal of a Multi-period Single Synthesizing Criterion Approach," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 341-385, August.
    16. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    17. Oludunsin Arodudu & Katharina Helming & Hubert Wiggering & Alexey Voinov, 2016. "Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis," Energies, MDPI, vol. 10(1), pages 1-18, December.
    18. Bolger, Fergus & Rowe, Gene & Belton, Ian & Crawford, Megan M & Hamlin, Iain & Sissons, Aileen & Taylor Browne Lūka, Courtney & Vasilichi, Alexandrina & Wright, George, 2020. "The Simulated Group Response Paradigm: A new approach to the study of opinion change in Delphi and other structured-group techniques," OSF Preprints 4ufzg, Center for Open Science.
    19. Feiz, Roozbeh & Ammenberg, Jonas, 2017. "Assessment of feedstocks for biogas production, part I—A multi-criteria approach," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 373-387.
    20. Welfle, Andrew & Röder, Mirjam, 2022. "Mapping the sustainability of bioenergy to maximise benefits, mitigate risks and drive progress toward the Sustainable Development Goals," Renewable Energy, Elsevier, vol. 191(C), pages 493-509.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:5:p:801-:d:98284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.