IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p163-d88596.html
   My bibliography  Save this article

Positioning Nuclear Power in the Low-Carbon Electricity Transition

Author

Listed:
  • Aviel Verbruggen

    (Department of Engineering Management, University of Antwerp, 2000 Antwerpen, Belgium)

  • Yuliya Yurchenko

    (Department of International Business and Economics, University of Greenwich, London SE10 9LS, UK)

Abstract

Addressing climate change requires de-carbonizing future energy supplies in an increasingly energy-dependent world. The IEA and the IPCC (2014) mention the following as low-carbon energy supply options: ‘renewable energy, nuclear power and fossil fuels with carbon capture and storage’. Positioning nuclear power in the decarbonization transition is a problematic issue and is overridden by ill-conceived axioms. Before probing these axioms, we provide an overview of five major, postwar energy-related legacies and some insight into who is engaged in nuclear activities. We check whether low-carbon nuclear power passes the full sustainability test and whether it is compatible with the unfettered deployment of variable renewable power sourced from the sun and from wind and water currents, which delivers two negative answers. We show that the best approach of the sustainable energy transition was Germany’s 2011 decision to phase out nuclear power for a fast development and full deployment of renewable power. This is the best approach for the sustainable energy transition. We offer five practical suggestions to strengthen and accelerate carbon- and nuclear-free transitions. They are related to institutional issues like the role of cost-benefit analysis and the mission of the International Atomic Energy Agency, to the costs of nuclear risks and catastrophes, and to the historical record of nuclear technology and business.

Suggested Citation

  • Aviel Verbruggen & Yuliya Yurchenko, 2017. "Positioning Nuclear Power in the Low-Carbon Electricity Transition," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:163-:d:88596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbruggen, Aviel, 2013. "Revocability and reversibility in societal decision-making," Ecological Economics, Elsevier, vol. 85(C), pages 20-27.
    2. Verbruggen, Aviel & Laes, Erik & Lemmens, Sanne, 2014. "Assessment of the actual sustainability of nuclear fission power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 16-28.
    3. Mez, Lutz, 2012. "Nuclear energy–Any solution for sustainability and climate protection?," Energy Policy, Elsevier, vol. 48(C), pages 56-63.
    4. Jinchao Li & Xian Geng & Jinying Li, 2016. "A Comparison of Electricity Generation System Sustainability among G20 Countries," Sustainability, MDPI, vol. 8(12), pages 1-11, December.
    5. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    6. Verbruggen, Aviel, 2008. "Renewable and nuclear power: A common future?," Energy Policy, Elsevier, vol. 36(11), pages 4036-4047, November.
    7. Emily Cox & Phil Johnstone & Andy Stirlng, 2016. "Understanding the Intensity of UK Policy Commitments to Nuclear Power," SPRU Working Paper Series 2016-16, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Sungjoo Lee & Byungun Yoon & Juneseuk Shin, 2016. "Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case," Sustainability, MDPI, vol. 8(10), pages 1-16, September.
    9. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Ligus, 2017. "Evaluation of Economic, Social and Environmental Effects of Low-Emission Energy Technologies Development in Poland: A Multi-Criteria Analysis with Application of a Fuzzy Analytic Hierarchy Process (FA," Energies, MDPI, vol. 10(10), pages 1-20, October.
    2. Li, Kai & Tan, Xiujie & Yan, Yaxue & Jiang, Dalin & Qi, Shaozhou, 2022. "Directing energy transition toward decarbonization: The China story," Energy, Elsevier, vol. 261(PA).
    3. Yurchenko, Yuliya, 2020. "The energy sector and socio-ecological transformation: Europe in the global context," Greenwich Papers in Political Economy 30519, University of Greenwich, Greenwich Political Economy Research Centre.
    4. Abdilahi, Abdirahman M. & Mustafa, Mohd Wazir & Abujarad, Saleh Y. & Mustapha, Mamunu, 2018. "Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3101-3110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verbruggen, Aviel & Laes, Erik & Lemmens, Sanne, 2014. "Assessment of the actual sustainability of nuclear fission power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 16-28.
    2. Wealer, B. & Bauer, S. & Hirschhausen, C.v. & Kemfert, C. & Göke, L., 2021. "Investing into third generation nuclear power plants - Review of recent trends and analysis of future investments using Monte Carlo Simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Lars Sorge & Anne Neumann & Christian von Hirschhausen & Ben Wealer, 2019. "Nuclear Power, Democracy, Development, and Nuclear Warheads: Determinants for Introducing Nuclear Power," Discussion Papers of DIW Berlin 1811, DIW Berlin, German Institute for Economic Research.
    4. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    5. Verbruggen, Aviel, 2013. "Belgian nuclear power life extension and fuss about nuclear rents," Energy Policy, Elsevier, vol. 60(C), pages 91-97.
    6. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    7. Debin Fang & Shanshan Shi & Qian Yu, 2018. "Evaluation of Sustainable Energy Security and an Empirical Analysis of China," Sustainability, MDPI, vol. 10(5), pages 1-23, May.
    8. Yumashev, Dmitry & Johnson, Paul, 2017. "Flexible decision making in the wake of large scale nuclear emergencies: Long-term response," European Journal of Operational Research, Elsevier, vol. 261(1), pages 368-389.
    9. Neumann, Anne & Sorge, Lars & von Hirschhausen, Christian & Wealer, Ben, 2020. "Democratic quality and nuclear power: Reviewing the global determinants for the introduction of nuclear energy in 166 countries," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 63.
    10. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    11. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    12. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    13. Rohan Best & Paul J. Burke, 2020. "Energy mix persistence and the effect of carbon pricing," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 555-574, July.
    14. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    15. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    16. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    17. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    18. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    19. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.
    20. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:163-:d:88596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.