IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i12p2306-d122545.html
   My bibliography  Save this article

Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea

Author

Listed:
  • Eun Joo Yoon

    (Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 08826, Korea)

  • Dong Kun Lee

    (Department of Landscape Architecture and Rural System Engineering, Seoul National University, Seoul 08826, Korea)

  • Ho Gul Kim

    (Incheon Development Institute, Incheon 22711, Korea)

  • Hae Ryung Kim

    (Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul 08826, Korea)

  • Eunah Jung

    (Department of Landscape Architecture and Rural System Engineering, Seoul National University, Seoul 08826, Korea)

  • Heeyeun Yoon

    (Department of Landscape Architecture and Rural System Engineering, Seoul National University, Seoul 08826, Korea)

Abstract

Extreme landslides triggered by rainfall in hilly regions frequently lead to serious damage, including casualties and property loss. The frequency of landslide occurrences may increase under climate change, due to the increasing variability of precipitation. Developing urban areas outside landslide risk zones is the most effective method of reducing or preventing damage; however, planning in real life is a complex and nonlinear problem. For such multi-objective problems, genetic algorithms may be the most appropriate optimization tools. Therefore, in this study, we suggest a comprehensive land-use allocation plan using the Non-dominated Sorting Genetic Algorithm II to overcome multi-objective problems, including the minimization of landslide risk, minimization of change, and maximization of compactness. Our study area is Pyeongchang-gun, the host city of the 2018 Winter Olympics in Korea, where high development pressure has resulted in urban sprawl into the hazard zone where a large-scale landslide occurred in 2006. We obtain 100 Pareto plans that are better than the actual land use data for at least one objective, with five plans that explain the trade-offs between meeting the first and second objectives. The results can be used by decision makers for better urban planning and for climate change-related spatial adaptation.

Suggested Citation

  • Eun Joo Yoon & Dong Kun Lee & Ho Gul Kim & Hae Ryung Kim & Eunah Jung & Heeyeun Yoon, 2017. "Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2306-:d:122545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/12/2306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/12/2306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spiros M. Karakostas, 2017. "Bridging the gap between multi-objective optimization and spatial planning: a new post-processing methodology capturing the optimum allocation of land uses against established transportation infrastru," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(3), pages 305-326, April.
    2. Wenbo Chen & Gerrit J. Carsjens & Lihong Zhao & Haifeng Li, 2014. "A Spatial Optimization Model for Sustainable Land Use at Regional Level in China: A Case Study for Poyang Lake Region," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    3. Ortwin Renn, 1998. "Three decades of risk research: accomplishments and new challenges," Journal of Risk Research, Taylor & Francis Journals, vol. 1(1), pages 49-71, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Graff & C. Lissak & Y. Thiery & O. Maquaire & S. Costa & B. Laignel, 2019. "Analysis and quantification of potential consequences in multirisk coastal context at different spatial scales (Normandy, France)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 637-664, November.
    2. Ryota Arai & Masashi Kiguchi & Michio Murakami, 2020. "A Quantitative Estimation of the Effects of Measures to Counter Climate Change on Well-Being: Focus on Non-Use of Air Conditioners as a Mitigation Measure in Japan," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    3. Yeora Chae & Seo Hyung Choi & Yong Jee Kim, 2020. "Climate Change Policy Implications of Sustainable Development Pathways in Korea at Sub-National Scale," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    4. Yiming Wang & Pengcheng Xiang, 2018. "Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 11(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    2. O. Ionuş & M. Licurici & M. Pătroescu & S. Boengiu, 2015. "Assessment of flood-prone stripes within the Danube drainage area in the South-West Oltenia Development Region, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 69-88, February.
    3. Jieun Ryu & Eun Joo Yoon & Chan Park & Dong Kun Lee & Seong Woo Jeon, 2017. "A Flood Risk Assessment Model for Companies and Criteria for Governmental Decision-Making to Minimize Hazards," Sustainability, MDPI, vol. 9(11), pages 1-26, November.
    4. Tao Ye & Yangbin Liu & Jiwei Wang & Ming Wang & Peijun Shi, 2017. "Farmers’ crop insurance perception and participation decisions: empirical evidence from Hunan, China," Journal of Risk Research, Taylor & Francis Journals, vol. 20(5), pages 664-677, May.
    5. Scott, Susan V. & Perry, Nicholas, 2006. "The enactment of risk categories: organizing and re-organizing risk management practices in the energy industry," LSE Research Online Documents on Economics 37868, London School of Economics and Political Science, LSE Library.
    6. Tao Wu & Yuelong Wang, 2015. "Did the Establishment of Poyang Lake Eco-Economic Zone Increase Agricultural Labor Productivity in Jiangxi Province, China?," Sustainability, MDPI, vol. 8(1), pages 1-11, December.
    7. Birgit M Beisswingert & Keshun Zhang & Thomas Goetz & Urs Fischbacher, 2016. "Spillover Effects of Loss of Control on Risky Decision-Making," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.
    8. Terje Aven & Ortwin Renn, 2012. "On the Risk Management and Risk Governance of Petroleum Operations in the Barents Sea Area," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1561-1575, September.
    9. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    10. Volker Meyer & Sally Priest & Christian Kuhlicke, 2012. "Economic evaluation of structural and non-structural flood risk management measures: examples from the Mulde River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 301-324, June.
    11. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    12. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    13. Jamie K. Wardman, 2008. "The Constitution of Risk Communication in Advanced Liberal Societies," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1619-1637, December.
    14. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    15. Susan V. Scott & Geoff Walsham, 2005. "Reconceptualizing and Managing Reputation Risk in the Knowledge Economy: Toward Reputable Action," Organization Science, INFORMS, vol. 16(3), pages 308-322, June.
    16. Hannah A D Keage & Tobias Loetscher, 2018. "Estimating everyday risk: Subjective judgments are related to objective risk, mapping of numerical magnitudes and previous experience," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    17. Timotijevic, Lada & Barnett, Julie & Brown, Kerry & Raats, Monique M. & Shepherd, Richard, 2013. "Scientific decision-making and stakeholder consultations: The case of salt recommendations," Social Science & Medicine, Elsevier, vol. 85(C), pages 79-86.
    18. Grant, Kevin & Edgar, David & Sukumar, Arun & Meyer, Martin, 2014. "‘Risky business’: Perceptions of e-business risk by UK small and medium sized enterprises (SMEs)," International Journal of Information Management, Elsevier, vol. 34(2), pages 99-122.
    19. Dimitriou, Harry T. & Ward, E. John & Dean, Marco, 2016. "Presenting the case for the application of multi-criteria analysis to mega transport infrastructure project appraisal," Research in Transportation Economics, Elsevier, vol. 58(C), pages 7-20.
    20. Horia-Nicolai L. Teodorescu, 2015. "Defining resilience using probabilistic event trees," Environment Systems and Decisions, Springer, vol. 35(2), pages 279-290, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:12:p:2306-:d:122545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.