IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i8p725-d74977.html
   My bibliography  Save this article

Driftwood Biomass in Italy: Estimation and Characterization

Author

Listed:
  • Franco Cotana

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Cinzia Buratti

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Marco Barbanera

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Gianluca Cavalaglio

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Daniele Foschini

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Andrea Nicolini

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

  • Anna Laura Pisello

    (CIRIAF—Interuniversity Research Center, University of Perugia, Perugia 67-06125, Italy)

Abstract

In Italy, the accumulation of driftwood along the shore is a significant issue, especially for the coastal municipalities of the Central and Northern regions. The purpose of this study was to evaluate the distribution and availability of the coastal driftwood in Italy and its impacts, as well as analyzing its chemical–physical properties to evaluate possible employment in combustion applications. On the basis of a data gathering campaign for the period 2010–2014, about 60,000 tons of driftwood are reported to accumulate along the Italian shores every year. The two regions hardest-hit were Liguria and Veneto, with about 15,000 tons and 12,000 tons, respectively. Three sites were selected for driftwood sampling. The main issue deriving from chemical characterization was the high chlorine content (up to 2% on dry basis) and metal oxides in the ashes. Driftwood samples were then subjected to a natural washing cycle for 1 month; results revealed a significant drop in chlorine and metal oxides contents (up to 80%) and a low decrease of the lower heating value (about 20%). Furthermore, the percolated water was analyzed in terms of chemical oxygen demand (COD), showing values (up to 1100 mg O 2 /L) above the Italian limits for discharges into surface waters.

Suggested Citation

  • Franco Cotana & Cinzia Buratti & Marco Barbanera & Gianluca Cavalaglio & Daniele Foschini & Andrea Nicolini & Anna Laura Pisello, 2016. "Driftwood Biomass in Italy: Estimation and Characterization," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:725-:d:74977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/8/725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/8/725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    2. M. Mokrech & A. Kebede & R. Nicholls & F. Wimmer & L. Feyen, 2015. "An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe," Climatic Change, Springer, vol. 128(3), pages 245-260, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Greggio, Nicolas & Balugani, Enrico & Carlini, Carlotta & Contin, Andrea & Labartino, Nicola & Porcelli, Roberto & Quaranta, Marta & Righi, Serena & Vogli, Luciano & Marazza, Diego, 2019. "Theoretical and unused potential for residual biomasses in the Emilia Romagna Region (Italy) through a revised and portable framework for their categorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 590-606.
    2. Barbanera, M. & Cotana, F. & Di Matteo, U., 2018. "Co-combustion performance and kinetic study of solid digestate with gasification biochar," Renewable Energy, Elsevier, vol. 121(C), pages 597-605.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
    2. Gianluca Cavalaglio & Mattia Gelosia & Silvia D’Antonio & Andrea Nicolini & Anna Laura Pisello & Marco Barbanera & Franco Cotana, 2016. "Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-10, August.
    3. Botas, Juan A. & Moreno, Jovita & Espada, Juan J. & Serrano, David P. & Dufour, Javier, 2017. "Recycling of used lubricating oil: Evaluation of environmental and energy performance by LCA," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 315-323.
    4. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    5. Dominik Paprotny & Paweł Terefenko, 2017. "New estimates of potential impacts of sea level rise and coastal floods in Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1249-1277, January.
    6. Holman, I.P. & Brown, C & Janes, V & Sandars, D, 2017. "Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis," Agricultural Systems, Elsevier, vol. 151(C), pages 126-135.
    7. Ryan Paulik & Scott A. Stephens & Robert G. Bell & Sanjay Wadhwa & Ben Popovich, 2020. "National-Scale Built-Environment Exposure to 100-Year Extreme Sea Levels and Sea-Level Rise," Sustainability, MDPI, vol. 12(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:8:p:725-:d:74977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.