IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i6p587-d72447.html
   My bibliography  Save this article

Timber Chips as the Insulation Material for Energy Saving in Prefabricated Offices

Author

Listed:
  • Yupeng Wang

    (School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
    School of Human Settlement and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hiroatsu Fukuda

    (Department of Architecture, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

This research demonstrates the feasibility of a roof insulation method for prefabricated offices that uses vinyl packed timber chips to reduce air conditioning loads (hereinafter referred to as AC loads) and which also improves indoor thermal comfort. The advantages of the new roof insulation method were revealed through comparing the impacts of four roof types on prefabricated offices. The AC load and indoor thermal comfort (surface temperature and air temperature) were evaluated. The disposal of scrap timber discarded from building construction projects is costing money, and is also a waste of natural resources. The assessment of a new roof insulation method with timber chips demonstrates the advanced usage of timber chips, reducing the environmental load in the building construction process. On the other hand, since prefabricated offices have lower thermal storage capacities and are less airtight than RC (reinforced concrete) or S (steel) structured buildings, the AC load consumption and indoor thermal comfort exacerbation in prefabricated offices is more serious. Especially in summer, a large amount of solar energy absorption from the roof raises the indoor air temperature and significantly increases the cooling load. This research contributes to the environmental design for prefabricated offices, and develops a method for the reuse of wood chips.

Suggested Citation

  • Yupeng Wang & Hiroatsu Fukuda, 2016. "Timber Chips as the Insulation Material for Energy Saving in Prefabricated Offices," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:587-:d:72447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/6/587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/6/587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Sallal, Khaled A., 2003. "Comparison between polystyrene and fiberglass roof insulation in warm and cold climates," Renewable Energy, Elsevier, vol. 28(4), pages 603-611.
    2. Paul Joseph & Svetlana Tretsiakova-McNally, 2010. "Sustainable Non-Metallic Building Materials," Sustainability, MDPI, vol. 2(2), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    2. Hai Pham & Soo-Yong Kim & Truong-Van Luu, 2020. "Managerial perceptions on barriers to sustainable construction in developing countries: Vietnam case," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2979-3003, April.
    3. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    4. Xiaonuan Sun & Zhonghua Gou & Yi Lu & Yiqi Tao, 2018. "Strengths and Weaknesses of Existing Building Green Retrofits: Case Study of a LEED EBOM Gold Project," Energies, MDPI, vol. 11(8), pages 1-18, July.
    5. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    6. Ahmad, Irshad, 2010. "Performance of antisolar insulated roof system," Renewable Energy, Elsevier, vol. 35(1), pages 36-41.
    7. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    8. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    9. Egner, Lars Even & Klöckner, Christian A., 2021. "Temporal spillover of private housing energy retrofitting: Distribution of home energy retrofits and implications for subsidy policies," Energy Policy, Elsevier, vol. 157(C).
    10. Dixit, Manish K. & Fernández-Solís, Jose L. & Lavy, Sarel & Culp, Charles H., 2012. "Need for an embodied energy measurement protocol for buildings: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3730-3743.
    11. Ucar, Aynur & Balo, Figen, 2010. "Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls," Renewable Energy, Elsevier, vol. 35(1), pages 88-94.
    12. Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2011. "A Longitudinal Study on the Carbon Emissions of a New Residential Development," Sustainability, MDPI, vol. 3(8), pages 1-20, August.
    13. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    14. Heesun Lim & Chang-Deuk Eom & Byeong-il Ahn, 2021. "Estimation of the Values of Wooden Materials in Urban Regeneration: The Case of Seoullo in Korea," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    15. Ahmed M. Bolteya & Mohamed A. Elsayad & Ola D. El Monayeri & Adel M. Belal, 2022. "Impact of Phase Change Materials on Cooling Demand of an Educational Facility in Cairo, Egypt," Sustainability, MDPI, vol. 14(23), pages 1-14, November.
    16. Uthpala Rathnayake & Denvid Lau & Cheuk Lun Chow, 2020. "Review on Energy and Fire Performance of Water Wall Systems as a Green Building Façade," Sustainability, MDPI, vol. 12(20), pages 1-27, October.
    17. Chuloh Jung & Nahla Al Qassimi, 2022. "Investigating the Emission of Hazardous Chemical Substances from Mashrabiya Used for Indoor Air Quality in Hot Desert Climate," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    18. Sisman, Nuri & Kahya, Emin & Aras, Nil & Aras, Haydar, 2007. "Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions," Energy Policy, Elsevier, vol. 35(10), pages 5151-5155, October.
    19. Tian, Guangdong & Zhang, Honghao & Feng, Yixiong & Wang, Danqi & Peng, Yong & Jia, Hongfei, 2018. "Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 682-692.
    20. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:6:p:587-:d:72447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.