IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1248-d84048.html
   My bibliography  Save this article

The Fourth Wave of Digitalization and Public Transport: Opportunities and Challenges

Author

Listed:
  • Paul Davidsson

    (Internet of Things and People Research Center, K2—The Swedish Knowledge Centre for Public Transport, Department of Computer Science, Malmö University, Malmö 20506, Sweden)

  • Banafsheh Hajinasab

    (Internet of Things and People Research Center, K2—The Swedish Knowledge Centre for Public Transport, Department of Computer Science, Malmö University, Malmö 20506, Sweden)

  • Johan Holmgren

    (Internet of Things and People Research Center, K2—The Swedish Knowledge Centre for Public Transport, Department of Computer Science, Malmö University, Malmö 20506, Sweden)

  • Åse Jevinger

    (Internet of Things and People Research Center, K2—The Swedish Knowledge Centre for Public Transport, Department of Computer Science, Malmö University, Malmö 20506, Sweden)

  • Jan A. Persson

    (Internet of Things and People Research Center, K2—The Swedish Knowledge Centre for Public Transport, Department of Computer Science, Malmö University, Malmö 20506, Sweden)

Abstract

We investigate the opportunities and challenges of the forth wave of digitalization, also referred to as the Internet of Things (IoT), with respect to public transport and how it can support sustainable development of society. Environmental, economical, and social perspectives are considered through analysis of the existing literature and explorative studies. We conclude that there are great opportunities for both transport operators and planners, as well as for the travelers. We describe and analyze a number of concrete opportunities for each of these actors. However, in order to realize these opportunities, there are also a number of challenges that needs to be addressed. There are both technical challenges, such as data collection issues, interoperability, scalability and information security, and non-technical challenges such as business models, usability, privacy issues, and deployment.

Suggested Citation

  • Paul Davidsson & Banafsheh Hajinasab & Johan Holmgren & Åse Jevinger & Jan A. Persson, 2016. "The Fourth Wave of Digitalization and Public Transport: Opportunities and Challenges," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1248-:d:84048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    2. Nelson, John D. & Wright, Steve & Masson, Brian & Ambrosino, Giorgio & Naniopoulos, Aristotelis, 2010. "Recent developments in Flexible Transport Services," Research in Transportation Economics, Elsevier, vol. 29(1), pages 243-248.
    3. Jespersen-Groth, J. & Potthoff, D. & Clausen, J. & Huisman, D. & Kroon, L.G. & Maróti, G. & Nielsen, M.N., 2007. "Disruption management in passenger railway transportation," Econometric Institute Research Papers EI 2007-05, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Andreas Ginkel & Anita Schöbel, 2007. "To Wait or Not to Wait? The Bicriteria Delay Management Problem in Public Transportation," Transportation Science, INFORMS, vol. 41(4), pages 527-538, November.
    5. Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
    6. Broome, Kieran & Worrall, Linda & Fleming, Jennifer & Boldy, Duncan, 2012. "Evaluation of flexible route bus transport for older people," Transport Policy, Elsevier, vol. 21(C), pages 85-91.
    7. Zeng, Amy Z. & Durach, Christian F. & Fang, Yan, 2012. "Collaboration decisions on disruption recovery service in urban public tram systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 578-590.
    8. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    2. Matthew Callcut & Jean-Paul Cerceau Agliozzo & Liz Varga & Lauren McMillan, 2021. "Digital Twins in Civil Infrastructure Systems," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    3. Leonard Heilig & Eduardo Lalla-Ruiz & Stefan Voß, 2017. "Digital transformation in maritime ports: analysis and a game theoretic framework," Netnomics, Springer, vol. 18(2), pages 227-254, December.
    4. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    5. Elżbieta Szymańska & Eugenia Panfiluk & Halina Kiryluk, 2021. "Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Białowieża Forest Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Mária Ďurišová & Emese Tokarčíková & Florina Oana Virlanuta & Zuzana Chodasová, 2019. "The Corporate Performance Measurement and Its Importance for the Pricing in a Transport Enterprise," Sustainability, MDPI, vol. 11(21), pages 1-17, November.
    7. Alžbeta Kucharčíková & Martin Mičiak, 2018. "Human Capital Management in Transport Enterprises with the Acceptance of Sustainable Development in the Slovak Republic," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    8. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    9. Elzbieta Szymanska & Zofia Koloszko-Chomentowska, 2022. "Sustainable Innovative Mobility Solutions Preferred by Inhabitants of Rural Areas—The Case of Lithuania and Poland," Sustainability, MDPI, vol. 14(11), pages 1-21, May.
    10. Weckström, Christoffer & Mladenović, Miloš N. & Kujala, Rainer & Saramäki, Jari, 2021. "Navigability assessment of large-scale redesigns in nine public transport networks: Open timetable data approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 212-229.
    11. Heidary Dahooie, Jalil & Mohammadian, Ayoub & Qorbani, Ali Reza & Daim, Tugrul, 2023. "A portfolio selection of internet of things (IoTs) applications for the sustainable urban transportation: A novel hybrid multi criteria decision making approach," Technology in Society, Elsevier, vol. 75(C).
    12. Yousra El Kihel, 2022. "Digital Transition Methodology of a Warehouse in the Concept of Sustainable Development with an Industrial Case Study," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    13. Serap Turkyilmaz & Erkut Altindað, 2022. "Analysis of Smart Home Systems in the Context of the Internet of Things in Terms of Consumer Experience," International Review of Management and Marketing, Econjournals, vol. 12(1), pages 19-31.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elżbieta Szymańska & Eugenia Panfiluk & Halina Kiryluk, 2021. "Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Białowieża Forest Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    2. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    3. Yajuan Deng & Xiaolei Ru & Ziqi Dou & Guohua Liang, 2018. "Design of Bus Bridging Routes in Response to Disruption of Urban Rail Transit," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    4. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    5. Åse Jevinger & Jan A. Persson, 2019. "Exploring the potential of using real-time traveler data in public transport disturbance management," Public Transport, Springer, vol. 11(2), pages 413-441, August.
    6. G. Dikas & I. Minis, 2018. "Scheduled Paratransit Transport Enhanced by Accessible Taxis," Transportation Science, INFORMS, vol. 52(5), pages 1122-1140, October.
    7. (Edward) Kim, Myungseob & Levy, Joshua & Schonfeld, Paul, 2019. "Optimal zone sizes and headways for flexible-route bus services," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 67-81.
    8. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    9. Aylin Kalpakcı & Neslihan Karataş Ünverdi, 2016. "Integration of paratransit systems with inner-city bus transport: the case of Izmir," Public Transport, Springer, vol. 8(3), pages 405-426, December.
    10. Sharif Azadeh, Shadi & van der Zee, J. & Wagenvoort, M., 2022. "Choice-driven service network design for an integrated fixed line and demand responsive mobility system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 557-574.
    11. Carlo Luiu & Miles Tight & Michael Burrow, 2018. "Factors Preventing the Use of Alternative Transport Modes to the Car in Later Life," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
    12. MELIS, Lissa & SÖRENSEN, Kenneth, 2020. "The on-demand bus routing problem: A large neighborhood search heuristic for a dial-a-ride problem with bus station assignment," Working Papers 2020005, University of Antwerp, Faculty of Business and Economics.
    13. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    14. Hoogervorst, R. & Dollevoet, T.A.B. & Maróti, G. & Huisman, D., 2018. "Reducing Passenger Delays by Rolling Stock Rescheduling," Econometric Institute Research Papers EI2018-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    15. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    16. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    17. Sánchez-Martínez, G.E. & Koutsopoulos, H.N. & Wilson, N.H.M., 2016. "Real-time holding control for high-frequency transit with dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 1-19.
    18. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    19. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    20. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1248-:d:84048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.