IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i2p1076-1092d33206.html
   My bibliography  Save this article

The Built Environment and Walking Activity of the Elderly: An Empirical Analysis in the Zhongshan Metropolitan Area, China

Author

Listed:
  • Yi Zhang

    (School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China)

  • Yuan Li

    (School of Architecture and Civil Engineering, Xiamen University, 422 South Siming Road, 361005 Xiamen, China)

  • Qixing Liu

    (Rotterdam School of Management, Erasmus University, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands)

  • Chaoyang Li

    (School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China)

Abstract

Policies and interventions involving the built environment have become a promising opportunity for the promotion of walking as a sustainable transportation mode. Among voluminous literature, few studies were found that examined the association between the built environment and walking among the elderly in China. This study investigated the relationship between the built environment and the walking activity of the elderly based on data collected in Zhongshan Metropolitan Area, China. The results suggest that abundant sidewalks, dense bus stops, easily accessible commercial establishments, and ample green land space are potentially effective to enhance walking among the elderly, albeit to varied degrees. The compact urban form, which is considered as walkability in the western context, may not necessarily play a positive role in Zhongshan’s context. The findings provide insights into the policy-making to promote sustainable transportation modes and the design of interventions on health promotion of the elderly in China.

Suggested Citation

  • Yi Zhang & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "The Built Environment and Walking Activity of the Elderly: An Empirical Analysis in the Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(2), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:2:p:1076-1092:d:33206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/2/1076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/2/1076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    3. Luis Martínez & José Viegas & Elisabete Silva, 2009. "A traffic analysis zone definition: a new methodology and algorithm," Transportation, Springer, vol. 36(5), pages 581-599, September.
    4. Hannah M. Badland & Nick Garrett & Grant M. Schofield, 2010. "How Does Car Parking Availability and Public Transport Accessibility Influence Work-Related Travel Behaviors?," Sustainability, MDPI, vol. 2(2), pages 1-15, February.
    5. Berke, E.M. & Koepsell, T.D. & Moudon, A.V. & Hoskins, R.E. & Larson, E.B., 2007. "Association of the built environment with physical activity and obesity in older persons," American Journal of Public Health, American Public Health Association, vol. 97(3), pages 486-492.
    6. Siegel, P.Z. & Brackbill, R.M. & Heath, G.W., 1995. "The epidemiology of walking for exercise: Implications for promoting activity among sedentary groups," American Journal of Public Health, American Public Health Association, vol. 85(5), pages 706-710.
    7. Riva, Mylene & Gauvin, Lise & Apparicio, Philippe & Brodeur, Jean-Marc, 2009. "Disentangling the relative influence of built and socioeconomic environments on walking: The contribution of areas homogenous along exposures of interest," Social Science & Medicine, Elsevier, vol. 69(9), pages 1296-1305, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wendan Zhang & Jian Lu & Ping Xu & Yi Zhang, 2015. "Moving towards Sustainability: Road Grades and On-Road Emissions of Heavy-Duty Vehicles—A Case Study," Sustainability, MDPI, vol. 7(9), pages 1-28, September.
    2. Eun Jung Kim & Suin Jin, 2023. "Walk Score and Neighborhood Walkability: A Case Study of Daegu, South Korea," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
    3. Yi Zhang & Xiaoguang Yang & Qixing Liu & Chaoyang Li, 2015. "Who Will Use Pre-Trip Traveler Information and How Will They Respond? Insights from Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    4. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    5. Hae Young Yun, 2019. "Environmental Factors Associated with Older Adult’s Walking Behaviors: A Systematic Review of Quantitative Studies," Sustainability, MDPI, vol. 11(12), pages 1-45, June.
    6. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    7. Yi Zhang & Wei Wu & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Does the Built Environment Make a Difference? An Investigation of Household Vehicle Use in Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(8), pages 1-21, August.
    8. Ali Keyvanfar & M. Salim Ferwati & Arezou Shafaghat & Hasanuddin Lamit, 2018. "A Path Walkability Assessment Index Model for Evaluating and Facilitating Retail Walking Using Decision-Tree-Making (DTM) Method," Sustainability, MDPI, vol. 10(4), pages 1-33, March.
    9. Haruka Kato, 2020. "Effect of Walkability on Urban Sustainability in the Osaka Metropolitan Fringe Area," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    10. Yi Lu & Guibo Sun & Chinmoy Sarkar & Zhonghua Gou & Yang Xiao, 2018. "Commuting Mode Choice in a High-Density City: Do Land-Use Density and Diversity Matter in Hong Kong?," IJERPH, MDPI, vol. 15(5), pages 1-13, May.
    11. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    12. Jiabin Yu & Chen Yang & Xiaoguang Zhao & Zhexiao Zhou & Shen Zhang & Diankai Zhai & Jianshe Li, 2021. "The Associations of Built Environment with Older People Recreational Walking and Physical Activity in a Chinese Small-Scale City of Yiwu," IJERPH, MDPI, vol. 18(5), pages 1-12, March.
    13. Qinglin Jia & Tao Zhang & Long Cheng & Gang Cheng & Minjie Jin, 2022. "The Impact of the Neighborhood Built Environment on the Walking Activity of Older Adults: A Multi-Scale Spatial Heterogeneity Analysis," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    14. Yi Lu & Long Chen & Yiyang Yang & Zhonghua Gou, 2018. "The Association of Built Environment and Physical Activity in Older Adults: Using a Citywide Public Housing Scheme to Reduce Residential Self-Selection Bias," IJERPH, MDPI, vol. 15(9), pages 1-13, September.
    15. Chuang Gao & Jiabin Yu & Xiaoguang Zhao & Haibao Wang & Zhiyong Liu & Yaodong Gu, 2022. "The Effect of Built Environment on Older People Leisure-Time Walking and Physical Activity in Different Sex Groups in the City of Ningbo, China," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    16. Mohammad Paydar & Asal Kamani Fard, 2022. "Walking Behavior of Older Adults in Temuco, Chile: The Contribution of the Built Environment and Socio-Demographic Factors," IJERPH, MDPI, vol. 19(22), pages 1-23, November.
    17. Lanjing Wang & Chunli Zhao & Xiaofei Liu & Xumei Chen & Chaoyang Li & Tao Wang & Jiani Wu & Yi Zhang, 2021. "Non-Linear Effects of the Built Environment and Social Environment on Bus Use among Older Adults in China: An Application of the XGBoost Model," IJERPH, MDPI, vol. 18(18), pages 1-22, September.
    18. Yi Zhang & Xiaoguang Yang & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Household, Personal and Environmental Correlates of Rural Elderly’s Cycling Activity: Evidence from Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    19. Xu, Jiwei & Liu, Yaolin & Liu, Yanfang & An, Rui & Tong, Zhaomin, 2023. "Integrating street view images and deep learning to explore the association between human perceptions of the built environment and cardiovascular disease in older adults," Social Science & Medicine, Elsevier, vol. 338(C).
    20. Mohammad Paydar & Asal Kamani Fard, 2021. "The Contribution of Mobile Apps to the Improvement of Walking/Cycling Behavior Considering the Impacts of COVID-19 Pandemic," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    21. Liu, Zhengying & Kemperman, Astrid & Timmermans, Harry & Yang, Dongfeng, 2021. "Heterogeneity in physical activity participation of older adults: A latent class analysis," Journal of Transport Geography, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Xiaoguang Yang & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Household, Personal and Environmental Correlates of Rural Elderly’s Cycling Activity: Evidence from Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    2. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    3. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    4. Xiaoquan Wang & Chunfu Shao & Chaoying Yin & Chengxiang Zhuge & Wenjun Li, 2018. "Application of Bayesian Multilevel Models Using Small and Medium Size City in China: The Case of Changchun," Sustainability, MDPI, vol. 10(2), pages 1-15, February.
    5. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    6. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    7. Amer Habibullah & Nawaf Alhajaj & Ahmad Fallatah, 2022. "One-Kilometer Walking Limit during COVID-19: Evaluating Accessibility to Residential Public Open Spaces in a Major Saudi City," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    8. Andrea Rebecchi & Maddalena Buffoli & Marco Dettori & Letizia Appolloni & Antonio Azara & Paolo Castiglia & Daniela D’Alessandro & Stefano Capolongo, 2019. "Walkable Environments and Healthy Urban Moves: Urban Context Features Assessment Framework Experienced in Milan," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    9. Bojing Liao & Yifan Xu & Xiang Li & Ji Li, 2022. "Association between Campus Walkability and Affective Walking Experience, and the Mediating Role of Walking Attitude," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    10. Gerlinde Grasser & Delfien Dyck & Sylvia Titze & Willibald Stronegger, 2013. "Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(4), pages 615-625, August.
    11. Letizia Appolloni & Daniela D’Alessandro, 2023. "Neighborhoods’ Walkability for Elderly People: An Italian Experience," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    12. Xavier Delclòs-Alió & Oriol Marquet & Guillem Vich & Jasper Schipperijn & Kai Zhang & Monika Maciejewska & Carme Miralles-Guasch, 2019. "Temperature and Rain Moderate the Effect of Neighborhood Walkability on Walking Time for Seniors in Barcelona," IJERPH, MDPI, vol. 17(1), pages 1-11, December.
    13. De Vos, Jonas, 2018. "Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 261-274.
    14. Otsuka, Noriko & Wittowsky, Dirk & Damerau, Marlene & Gerten, Christian, 2021. "Walkability assessment for urban areas around railway stations along the Rhine-Alpine Corridor," Journal of Transport Geography, Elsevier, vol. 93(C).
    15. Rongrong Zhang & Song Liu & Ming Li & Xiong He & Chunshan Zhou, 2021. "The Effect of High-Density Built Environments on Elderly Individuals’ Physical Health: A Cross-Sectional Study in Guangzhou, China," IJERPH, MDPI, vol. 18(19), pages 1-22, September.
    16. Tashi Dendup & Xiaoqi Feng & Stephanie Clingan & Thomas Astell-Burt, 2018. "Environmental Risk Factors for Developing Type 2 Diabetes Mellitus: A Systematic Review," IJERPH, MDPI, vol. 15(1), pages 1-25, January.
    17. Yi Zhang & Wei Wu & Yuan Li & Qixing Liu & Chaoyang Li, 2014. "Does the Built Environment Make a Difference? An Investigation of Household Vehicle Use in Zhongshan Metropolitan Area, China," Sustainability, MDPI, vol. 6(8), pages 1-21, August.
    18. Feuillet, T. & Commenges, H. & Menai, M. & Salze, P. & Perchoux, C. & Reuillon, R. & Kesse-Guyot, E. & Enaux, C. & Nazare, J.-A. & Hercberg, S. & Simon, C. & Charreire, H. & Oppert, J.M., 2018. "A massive geographically weighted regression model of walking-environment relationships," Journal of Transport Geography, Elsevier, vol. 68(C), pages 118-129.
    19. Shima Hamidi & Somayeh Moazzeni, 2019. "Examining the Relationship between Urban Design Qualities and Walking Behavior: Empirical Evidence from Dallas, TX," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    20. Christopher Zegras & Jae Seung Lee & Eran Ben-Joseph, 2012. "By Community or Design? Age-restricted Neighbourhoods, Physical Design and Baby Boomers’ Local Travel Behaviour in Suburban Boston, US," Urban Studies, Urban Studies Journal Limited, vol. 49(10), pages 2169-2198, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:2:p:1076-1092:d:33206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.