IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i4p1680-1699d25172.html
   My bibliography  Save this article

Indoor Thermal Comfort: The Behavioral Component

Author

Listed:
  • Jack Barkenbus

    (Climate Change Research Network, Vanderbilt Institute for Energy & Environment, Vanderbilt University, PMB 407702, 2301 Vanderbilt Place, Nashville, TN 37240, USA)

Abstract

This is a study of how indoor temperature settings have changed over time in the United States based on data from the Energy Information Administration’s, Residential Energy Consumption Survey (RECS). It is shown that Americans have moderately raised indoor temperature settings during the heating season over the past thirty years. It is also shown that most Americans keep their homes relatively cool in the summertime and are generally averse to implementing temperature setbacks. It is revealed that occupants in lower-income homes tend to set their thermostats higher in winter than other income groups, but that the most intense cooling tends to take place in both low-income and high-income homes. As expected, renters tend to heat and cool more intensively than homeowners. Getting Americans to change their temperature settings in order to save energy is not easy even though it comes with the promise of financial savings. The use of programmable thermostats thus far has proved unsuccessful. Greater utilization of social marketing to achieve energy savings is suggested, as well as a renewed effort on the part of electricity suppliers to work more closely with homeowners as part of the rollout of the “smart grid”.

Suggested Citation

  • Jack Barkenbus, 2013. "Indoor Thermal Comfort: The Behavioral Component," Sustainability, MDPI, vol. 5(4), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:4:p:1680-1699:d:25172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/4/1680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/4/1680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alex Wilson & Jessica Boehland, 2005. "Small is Beautiful U.S. House Size, Resource Use, and the Environment," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 277-287, January.
    2. Leighty, Wayne & Meier, Alan, 2011. "Accelerated electricity conservation in Juneau, Alaska: A study of household activities that reduced demand 25%," Energy Policy, Elsevier, vol. 39(5), pages 2299-2309, May.
    3. Lakeridou, Michelle & Ucci, Marcella & Marmot, Alexi & Ridley, Ian, 2012. "The potential of increasing cooling set-points in air-conditioned offices in the UK," Applied Energy, Elsevier, vol. 94(C), pages 338-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chong Peng & Chu Li & Zuyu Zou & Suwan Shen & Dongqi Sun, 2015. "Improvement of Air Quality and Thermal Environment in an Old City District by Constructing Wind Passages," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    2. Jing Lin & Boqiang Lin, 2016. "How Much CO 2 Emissions Can Be Reduced in China’s Heating Industry," Sustainability, MDPI, vol. 8(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boudet, Hilary S. & Flora, June A. & Armel, K. Carrie, 2016. "Clustering household energy-saving behaviours by behavioural attribute," Energy Policy, Elsevier, vol. 92(C), pages 444-454.
    2. Tuan Khanh Vuong, 2024. "Factors Affecting Households’ Electricity-Saving Behaviour: A Perspective on Sustainable Development," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 440-449, July.
    3. Astier, Nicolas, 2018. "Comparative feedbacks under incomplete information," Resource and Energy Economics, Elsevier, vol. 54(C), pages 90-108.
    4. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    6. Nicolas Astier, 2016. "Comparative Feedbacks under Incomplete Information," Working Papers hal-01465189, HAL.
    7. Yongzhu Hua & Qiangqiang Xie & Liang Zheng & Jiadong Cui & Lihuan Shao & Weiwei Hu, 2022. "Coordinated Voltage Control Strategy by Optimizing the Limited Regulation Capacity of Air Conditioners," Energies, MDPI, vol. 15(9), pages 1-14, April.
    8. Wang, Jianming & Li, Yongqiang & He, Zhengxia & Gao, Jian & Wang, Jianguo, 2022. "Scale framing, benefit framing and their interaction effects on energy-saving behaviors: Evidence from urban residents of China," Energy Policy, Elsevier, vol. 166(C).
    9. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    10. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    11. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
    12. Ann Ingerson, 2011. "Carbon storage potential of harvested wood: summary and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(3), pages 307-323, March.
    13. Zbigniew Bohdanowicz & Beata Łopaciuk-Gonczaryk & Jarosław Kowalski & Cezary Biele, 2021. "Households’ Electrical Energy Conservation and Management: An Ecological Break-Through, or the Same Old Consumption-Growth Path?," Energies, MDPI, vol. 14(20), pages 1-21, October.
    14. Osamu Kimura and Ken-Ichiro Nishio, 2016. "Responding to electricity shortfalls: Electricity-saving activities of households and firms in Japan after Fukushima," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    15. Tampakis, Stilianos & Arabatzis, Garyfallos & Tsantopoulos, Georgios & Rerras, Ioannis, 2017. "Citizens’ views on electricity use, savings and production from renewable energy sources: A case study from a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 39-49.
    16. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    17. Peter Newman, 2014. "Density, the Sustainability Multiplier: Some Myths and Truths with Application to Perth, Australia," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    18. Lakeridou, Michelle & Ucci, Marcella & Marmot, Alexi, 2014. "Imposing limits on summer set-points in UK air-conditioned offices: A survey of facility managers," Energy Policy, Elsevier, vol. 75(C), pages 354-368.
    19. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    20. Ghahramani, Ali & Zhang, Kenan & Dutta, Kanu & Yang, Zheng & Becerik-Gerber, Burcin, 2016. "Energy savings from temperature setpoints and deadband: Quantifying the influence of building and system properties on savings," Applied Energy, Elsevier, vol. 165(C), pages 930-942.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:4:p:1680-1699:d:25172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.