IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v3y2011i9p1486-1509d13890.html
   My bibliography  Save this article

Design of an Optimal Waste Utilization System: A Case Study in St. Petersburg, Russia

Author

Listed:
  • Mikhail Rodionov

    (Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, Aoba-Yama 6-6-11-815, Sendai 980-8579, Japan)

  • Toshihiko Nakata

    (Department of Management Science and Technology, Graduate School of Engineering, Tohoku University, Aoba-Yama 6-6-11-815, Sendai 980-8579, Japan)

Abstract

Storing municipal solid waste (MSW) in landfills is the oldest and still the primary waste management strategy in many countries. Russia is the third largest methane (CH 4 ) emitter country after USA and China, representing 5% of total global CH 4 emissions from waste landfilling. Due to high economical growth, the amount of waste generated in Russia has risen sharply over the last ten years. However, waste management in Russia is mainly based on landfilling. In order to design an optimal MSW utilization system considering various aspects related to sustainable MSW management, a linear programming model was introduced for this research. The performance of the proposed MSW utilization system in the target area has been evaluated in light of energy, economic, and environmental (3Es) aspects, such as system net cost, annual energy generated from the waste, and the carbon dioxide (CO 2 ) emissions of the system. St. Petersburg city was considered as the target area for the present analysis. The results show that the introduction of the proposed MSW system with energy recovery from waste along with a high level of material recovery has energy, environmental and economic benefits compared to the conventional treatment system. This paper emphasizes the importance of introducing waste treatment methods as an alternative to landfilling, and to improve recycling activities in Russia.

Suggested Citation

  • Mikhail Rodionov & Toshihiko Nakata, 2011. "Design of an Optimal Waste Utilization System: A Case Study in St. Petersburg, Russia," Sustainability, MDPI, vol. 3(9), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:3:y:2011:i:9:p:1486-1509:d:13890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/3/9/1486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/3/9/1486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carolyn Gochenour, 2001. "District Energy Trends, Issues, and Opportunities : The Role of the World Bank," World Bank Publications - Books, The World Bank Group, number 13903.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ning & Zhang, Duo & Zuo, Jian & Miller, Travis R. & Duan, Huabo & Schiller, Georg, 2022. "Potential for CO2 mitigation and economic benefits from accelerated carbonation of construction and demolition waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Kristin Faye Olalo & Jun Nakatani & Tsuyoshi Fujita, 2022. "Optimal Process Network for Integrated Solid Waste Management in Davao City, Philippines," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    3. Safar, Korai Muhammad & Bux, Mahar Rasool & Faria, Uqaili & Pervez, Shaikh, 2021. "Integrated model of municipal solid waste management for energy recovery in Pakistan," Energy, Elsevier, vol. 219(C).
    4. Simona Ciuta & Tiberiu Apostol & Valentin Rusu, 2015. "Urban and Rural MSW Stream Characterization for Separate Collection Improvement," Sustainability, MDPI, vol. 7(1), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fankhauser, Samuel & Tepic, Sladjana, 2007. "Can poor consumers pay for energy and water? An affordability analysis for transition countries," Energy Policy, Elsevier, vol. 35(2), pages 1038-1049, February.
    2. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2011. "Experimental evaluation of radiator control based on primary supply temperature for district heating substations," Applied Energy, Elsevier, vol. 88(12), pages 4945-4951.
    3. Pickard, William F., 2013. "Transporting the terajoules: Efficient energy distribution in a post-carbon world," Energy Policy, Elsevier, vol. 62(C), pages 51-61.
    4. Urge-Vorsatz, Diana & Miladinova, Gergana & Paizs, Laszlo, 2006. "Energy in transition: From the iron curtain to the European Union," Energy Policy, Elsevier, vol. 34(15), pages 2279-2297, October.
    5. Anthony G. Bigio & Bharat Dahiya, 2004. "Urban Environment and Infrastructure : Toward Livable Cities," World Bank Publications - Books, The World Bank Group, number 15018.
    6. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    7. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:3:y:2011:i:9:p:1486-1509:d:13890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.