IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v2y2009i1p30-47d6623.html
   My bibliography  Save this article

The Role of Policies in Supporting the Diffusion of Solar Photovoltaic Systems: Experiences with Ontario, Canada’s Renewable Energy Standard Offer Program

Author

Listed:
  • Chris Adachi

    (Department of Environment and Resource Studies, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

  • Ian H. Rowlands

    (Department of Environment and Resource Studies, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada)

Abstract

Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV) systems. In November, 2006, the Ontario Power Authority (OPA) introduced the Renewable Energy Standard Offer Program (RESOP), offering owners of solar PV systems with a generation capacity under 10 MW a 20 year contract to sell electricity back to the grid at a guaranteed rate of CAD $0.42/kWh. While it is the intent of incentive programs such as the RESOP to begin to lower financial barriers in order to increase the uptake of solar PV systems, there is no guarantee that the level of participation will in fact rise. The "on-the-ground" manner in which consumers interact with such an incentive program ultimately determines its effectiveness. This paper analyzes the relationship between the RESOP and solar PV system consumers. Experiences of current RESOP participants are presented, wherein the factors that are either hindering or promoting utilization of the RESOP and the adoption of solar PV systems are identified.

Suggested Citation

  • Chris Adachi & Ian H. Rowlands, 2009. "The Role of Policies in Supporting the Diffusion of Solar Photovoltaic Systems: Experiences with Ontario, Canada’s Renewable Energy Standard Offer Program," Sustainability, MDPI, vol. 2(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:2:y:2009:i:1:p:30-47:d:6623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/2/1/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/2/1/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. del Río, Pablo & Unruh, Gregory, 2007. "Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1498-1513, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    2. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    2. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    3. Lee, Shun-Chung, 2011. "Using real option analysis for highly uncertain technology investments: The case of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4443-4450.
    4. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    5. Sergio Coronas & Jordi de la Hoz & Àlex Alonso & Helena Martín, 2022. "23 Years of Development of the Solar Power Generation Sector in Spain: A Comprehensive Review of the Period 1998–2020 from a Regulatory Perspective," Energies, MDPI, vol. 15(4), pages 1-53, February.
    6. Kuokkanen, A. & Nurmi, A. & Mikkilä, M. & Kuisma, M. & Kahiluoto, H. & Linnanen, L., 2018. "Agency in regime destabilization through the selection environment: The Finnish food system’s sustainability transition," Research Policy, Elsevier, vol. 47(8), pages 1513-1522.
    7. Cláudio Albuquerque Frate & Christian Brannstrom, 2019. "How Do Stakeholders Perceive Barriers to Large-Scale Wind Power Diffusion? A Q-Method Case Study from Ceará State, Brazil," Energies, MDPI, vol. 12(11), pages 1-14, May.
    8. Walker, S.L., 2012. "Can the GB feed-in tariff deliver the expected 2% of electricity from renewable sources?," Renewable Energy, Elsevier, vol. 43(C), pages 383-388.
    9. Zhao, Congyu & Dong, Kangyin & Jiang, Hong-Dian & Wang, Kun & Dong, Xiucheng, 2023. "How does energy poverty eradication realize the path to carbon unlocking? The case of China," Energy Economics, Elsevier, vol. 121(C).
    10. Kapoor, Karan & Pandey, Krishan K. & Jain, A.K. & Nandan, Ashish, 2014. "Evolution of solar energy in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 475-487.
    11. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    12. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    13. Nathalie Lazaric & Kevin Maréchal, 2010. "Overcoming inertia: insights from evolutionary economics into improved energy and climate policy," Post-Print hal-00452205, HAL.
    14. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    15. Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
    16. Rohankar, Nishant & Jain, A.K. & Nangia, Om P. & Dwivedi, Prasoom, 2016. "A study of existing solar power policy framework in India for viability of the solar projects perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 510-518.
    17. Katarzyna Chudy-Laskowska & Tomasz Pisula & Mirosław Liana & László Vasa, 2020. "Taxonomic Analysis of the Diversity in the Level of Wind Energy Development in European Union Countries," Energies, MDPI, vol. 13(17), pages 1-21, August.
    18. del Río, Pablo & Tarancón, Miguel-Ángel, 2012. "Analysing the determinants of on-shore wind capacity additions in the EU: An econometric study," Applied Energy, Elsevier, vol. 95(C), pages 12-21.
    19. Samuel-Soma M. Ajibade & Festus Victor Bekun & Festus Fatai Adedoyin & Bright Akwasi Gyamfi & Anthonia Oluwatosin Adediran, 2023. "Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)," Clean Technol., MDPI, vol. 5(2), pages 1-21, April.
    20. Zhao, Congyu & Dong, Kangyin & Lee, Chien-Chiang, 2024. "Carbon lock-in endgame: Can energy trilemma eradication contribute to decarbonization?," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:2:y:2009:i:1:p:30-47:d:6623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.