IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1954-d1599129.html
   My bibliography  Save this article

Research on the Measurement and Improvement in Fresh Product Supply Chain Resilience Based on Blockchain Technology

Author

Listed:
  • Zhong Zhao

    (School of Economics and Management, Yantai University, Yantai 264005, China)

  • Ziwen Zhu

    (School of Economics and Management, Yantai University, Yantai 264005, China)

Abstract

Fresh product faces intrinsic vulnerabilities to supply disruptions, given its perishable nature and seasonal dependencies. This underscores the critical importance of supply chain resilience in sustaining a steady and dependable flow of these goods and is a key factor in promoting the sustainable development of the supply chain. By employing well-established resilience metrics, specifically time to recovery, recovery level, and lost performance during recovery (with profit adopted as the performance indicator for this study), this study explores the resilience of the fresh product supply chain and examines the impact of blockchain technology on resilience enhancement. The findings indicate that when resilience is prioritized, optimal recovery efforts and supply recovery levels exceed those targeted solely for profit maximization. A negative correlation emerges between supply chain resilience and recovery delay, while an optimal supply recovery level is positively associated with recovery delay. Numerical evaluations further demonstrate that blockchain technology has a marked effect on elevating supply recovery levels, thus significantly strengthening resilience. Moreover, recovery levels display a positive correlation with the degree of blockchain adoption, while profit loss initially decreases before ascending alongside increased blockchain investments. Resilience also inversely correlates with fresh-keeping efforts, with blockchain applications accelerating this downward trend. Collectively, this study not only provides important references for recovery decision-making in the fresh agricultural product supply chain but also emphasizes the significant potential of blockchain technology (BT) in enhancing supply chain resilience and promoting sustainable development.

Suggested Citation

  • Zhong Zhao & Ziwen Zhu, 2025. "Research on the Measurement and Improvement in Fresh Product Supply Chain Resilience Based on Blockchain Technology," Sustainability, MDPI, vol. 17(5), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1954-:d:1599129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    2. Yang, Yuefeng & Xu, Xuerong, 2015. "Post-disaster grain supply chain resilience with government aid," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 139-159.
    3. Tang, Christopher S. & Davarzani, Hoda & Sarkis, Joseph, 2015. "Quantitative models for managing supply chain risks: A reviewAuthor-Name: Fahimnia, Behnam," European Journal of Operational Research, Elsevier, vol. 247(1), pages 1-15.
    4. Yousefi, Samuel & Mohamadpour Tosarkani, Babak, 2022. "An analytical approach for evaluating the impact of blockchain technology on sustainable supply chain performance," International Journal of Production Economics, Elsevier, vol. 246(C).
    5. Ana Esteso & M.M.E. Alemany & Angel Ortiz, 2018. "Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4418-4446, July.
    6. Soroush Saghafian & Mark P. Van Oyen, 2016. "Compensating for Dynamic Supply Disruptions: Backup Flexibility Design," Operations Research, INFORMS, vol. 64(2), pages 390-405, April.
    7. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    8. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    9. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    10. Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    2. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    3. Kumar, Devesh & Soni, Gunjan & Mangla, Sachin Kumar & Liao, Jiajia & Rathore, A.P.S. & Kazancoglu, Yigit, 2024. "Integrating resilience and reliability in semiconductor supply chains during disruptions," International Journal of Production Economics, Elsevier, vol. 276(C).
    4. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).
    5. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    6. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    7. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    8. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    9. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    10. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    11. Pattanayak, Sirsha & Ramkumar, M. & Goswami, Mohit & Rana, Nripendra P., 2024. "Blockchain technology and supply chain performance: The role of trust and relational capabilities," International Journal of Production Economics, Elsevier, vol. 271(C).
    12. Hou, Yunzhang & Wang, Xiaoling & Wu, Yenchun Jim & He, Peixu, 2018. "How does the trust affect the topology of supply chain network and its resilience? An agent-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 229-241.
    13. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    14. Abushaega, Mastoor M. & González, Andrés D. & Moshebah, Osamah Y., 2024. "A fairness-based multi-objective distribution and restoration model for enhanced resilience of supply chain transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Mukesh Kumar & Rakesh D. Raut & Mahak Sharma & Vikas Kumar Choubey & Sanjoy Kumar Paul, 2022. "Enablers for resilience and pandemic preparedness in food supply chain," Operations Management Research, Springer, vol. 15(3), pages 1198-1223, December.
    16. Chuangneng Cai & Xiancheng Hao & Kui Wang & Xuebing Dong, 2023. "The Impact of Perceived Benefits on Blockchain Adoption in Supply Chain Management," Sustainability, MDPI, vol. 15(8), pages 1-24, April.
    17. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2022. "Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains," Operations Management Research, Springer, vol. 15(1), pages 268-281, June.
    18. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    19. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    20. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1954-:d:1599129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.