IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i3p1273-d1583905.html
   My bibliography  Save this article

Spatiotemporal Analysis, Predictive Modeling, and Driving Mechanism Investigation of Carbon Storage Dynamics in Changde City Under the Framework of LUCC

Author

Listed:
  • Ziyi Luo

    (College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China)

  • Caihong Chen

    (College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China)

  • Jiyun She

    (College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China)

  • Yamin Wang

    (College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China)

  • Wenfu Tong

    (Engineering Research Center for Forestry Equipment of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China)

  • Zexin Guo

    (College of Computer and Mathematics, Central South University of Forestry and Technology, Changsha 410004, China)

Abstract

In the context of the worldwide attention on climate change, examining how land use relates to the carbon sink functions of regions is essential. This research innovatively utilizes the 2000–2020 land use data of Changde City, integrating the PLUS and InVEST models to analyze spatiotemporal changes and predict scenarios. It also combines the parameter geodetector and multiscale geographically weighted regression model to dissect driving factor distributions and mechanisms, capture interactions and multiscale impacts, uncover underlying laws, pioneer new paths for similar studies, and support regional ecological sustainability. The results show that from 2000–2020, forest and arable land areas declined while construction land expanded, leading to a yij1,172,200-ton carbon storage reduction in Changde City. Carbon storage decreased under natural development and arable land protection scenarios but increased in the ecological scenario. The main drivers of carbon storage in Changde City are the DEM, slope, and annual average temperature, with their interactions enhancing spatial heterogeneity. Human activities, especially in mountains and urbanizing regions, negatively impact carbon storage. This study aids in optimizing land resource allocation, improving land use efficiency, and promoting coordinated and sustainable development in Changde City’s ecological, economic, and social systems.

Suggested Citation

  • Ziyi Luo & Caihong Chen & Jiyun She & Yamin Wang & Wenfu Tong & Zexin Guo, 2025. "Spatiotemporal Analysis, Predictive Modeling, and Driving Mechanism Investigation of Carbon Storage Dynamics in Changde City Under the Framework of LUCC," Sustainability, MDPI, vol. 17(3), pages 1-20, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1273-:d:1583905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/3/1273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/3/1273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruei-Yuan Wang & Huina Cai & Lingkang Chen & Taohui Li, 2023. "Spatiotemporal Evolution and Multi-Scenario Prediction of Carbon Storage in the GBA Based on PLUS–InVEST Models," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    2. Nangware Kajia Msofe & Lianxi Sheng & James Lyimo, 2019. "Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    3. Mengyao Li & Hongxia Luo & Zili Qin & Yuanxin Tong, 2023. "Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios," Land, MDPI, vol. 12(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    2. Fayaz Ahmad Lone & M. Imran Ganaie & Showkat A. Ganaie & M. Shafi Bhat & Javeed Ahmad Rather, 2023. "Drivers of agricultural land-use change in Kashmir valley - an application of mixed method approach," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-20, December.
    3. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    4. Neema Simon Sumari & Gang Xu & Fanan Ujoh & Prosper Issahaku Korah & Obas John Ebohon & Neema Nicodemus Lyimo, 2019. "A Geospatial Approach to Sustainable Urban Planning: Lessons for Morogoro Municipal Council, Tanzania," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    5. Britta Höllermann & Kristian Näschen & Naswiru Tibanyendela & Julius Kwesiga & Mariele Evers, 2021. "Dynamics of Human–Water Interactions in the Kilombero Valley, Tanzania: Insights from Farmers’ Aspirations and Decisions in an Uncertain Environment," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(4), pages 980-999, August.
    6. Nangware Kajia Msofe & Lianxi Sheng & Zhenxin Li & Lingyan Wang & Nangware Kajia Msofe & Nangware Kajia Msofe & Lianxi Sheng & Zhenxin Li & Lingyan Wang & Lyimo J, 2019. "Influence of Agricultural Land Use Change on the Selected Physico-Chemical Soil Properties in Kilombero Valley Floodplain, Southeastern Tanzania," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 21(5), pages 01-11, October.
    7. Ayyad, Saher & Karimi, Poolad & Langensiepen, Matthias & Ribbe, Lars & Rebelo, Lisa-Maria & Becker, Mathias, 2022. "Remote sensing assessment of available green water to increase crop production in seasonal floodplain wetlands of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Xue Zhou & Yang Zhou, 2021. "Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China," Land, MDPI, vol. 10(9), pages 1-17, September.
    9. Kristian Näschen & Bernd Diekkrüger & Mariele Evers & Britta Höllermann & Stefanie Steinbach & Frank Thonfeld, 2019. "The Impact of Land Use/Land Cover Change (LULCC) on Water Resources in a Tropical Catchment in Tanzania under Different Climate Change Scenarios," Sustainability, MDPI, vol. 11(24), pages 1-28, December.
    10. Dadirai Matarira & Onisimo Mutanga & Maheshvari Naidu & Terence Darlington Mushore & Marco Vizzari, 2023. "Characterizing Informal Settlement Dynamics Using Google Earth Engine and Intensity Analysis in Durban Metropolitan Area, South Africa: Linking Pattern to Process," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    11. Bayu Dwi Anggono & Rofi Wahanisa & Cairin Melina, 2023. "Determinants of Sustainable Land Use Change in Agricultural Utilization and Environmental Performance," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 545-551, May.
    12. Amal Najihah Muhamad Nor & Hasifah Abdul Aziz & Siti Aisyah Nawawi & Rohazaini Muhammad Jamil & Muhamad Azahar Abas & Kamarul Ariffin Hambali & Abdul Hafidz Yusoff & Norfadhilah Ibrahim & Nur Hairunni, 2021. "Evolution of Green Space under Rapid Urban Expansion in Southeast Asian Cities," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    13. Jinyao Lin & Qitong Chen, 2023. "Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region," Land, MDPI, vol. 12(11), pages 1-16, November.
    14. Uisso, Amani Michael & Tanrıvermiş, Harun, 2021. "Driving factors and assessment of changes in the use of arable land in Tanzania," Land Use Policy, Elsevier, vol. 104(C).
    15. Sugianto Sugianto & Anwar Deli & Edy Miswar & Muhammad Rusdi & Muhammad Irham, 2022. "The Effect of Land Use and Land Cover Changes on Flood Occurrence in Teunom Watershed, Aceh Jaya," Land, MDPI, vol. 11(8), pages 1-18, August.
    16. Parviz Azizi & Ali Soltani & Farokh Bagheri & Shahrzad Sharifi & Mehdi Mikaeili, 2022. "An Integrated Modelling Approach to Urban Growth and Land Use/Cover Change," Land, MDPI, vol. 11(10), pages 1-26, October.
    17. Bisrat Haile Gebrekidan & Thomas Heckelei & Sebastian Rasch, 2020. "Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    18. Catherine C. Sang & Daniel O. Olago & Tobias O. Nyumba & Robert Marchant & Jessica P. R. Thorn, 2022. "Assessing the Underlying Drivers of Change over Two Decades of Land Use and Land Cover Dynamics along the Standard Gauge Railway Corridor, Kenya," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    19. Dawit Samuel Teshome & Habitamu Taddese & Terefe Tolessa & Moges Kidane & Songcai You, 2022. "Drivers and Implications of Land Cover Dynamics in Muger Sub-Basin, Abay Basin, Ethiopia," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    20. Haoran Fan & Qi Si & Wenming Dong & Gang Lu & Xinping Liu, 2023. "Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios," Sustainability, MDPI, vol. 15(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:3:p:1273-:d:1583905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.