IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p769-d1570737.html
   My bibliography  Save this article

The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation

Author

Listed:
  • Maria Isabella Sifola

    (Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, Portici, 80055 Napoli, Italy)

  • Linda Carrino

    (Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, Portici, 80055 Napoli, Italy)

  • Eugenio Cozzolino

    (Research Center for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Via Torrino 3, 81100 Caserta, Italy)

  • Mario Palladino

    (Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, Portici, 80055 Napoli, Italy)

  • Mariarosaria Sicignano

    (Research Center for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Via Torrino 3, 81100 Caserta, Italy)

  • Daniele Todisco

    (Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, Portici, 80055 Napoli, Italy)

  • Luisa del Piano

    (Research Center for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Via Torrino 3, 81100 Caserta, Italy)

Abstract

A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring ( Vicia villosa Roth, cv. villana) on a tobacco crop (dark fire-cured Kentucky type, cv. Foiano) grown under both full (100% of ET c ) and deficit (70% of crop evapotranspiration, ET c ) irrigation. The treatments are hereafter reported as GM (vetch green manuring) and NGM (no vetch green manuring), FI (full irrigation) and DI (deficit irrigation), and C (compost soil amendment) and NC (no compost soil amendment). The following parameters were calculated: (i) yield of the cured product (CLY, Mg ha −1 ) at a standard moisture content of 19%; (ii) irrigation water use efficiency (IWUE, kg of cured product m −3 seasonal irrigation volume), nitrogen (N) agronomic efficiency (NAE, kg of cured product kg −1 mineral N by synthetic fertilizers). Dry biomass accumulated in the stem and leaves (Mg ha −1 ) was also measured at 25, 57, 74, and 92 days after transplanting (DAT). The N recovery from the different plant parts (kg ha −1 ) was determined at 57 and 74 DAT. The C/N ratio, NO 3 -N (kg ha −1 ), the soil organic matter (SOM, %), and the soil contents of P 2 O 5 and K 2 O (mg kg −1 ) were also analytically determined at 43, 74, and 116 DAT. Water retention measurements were carried out on soil samples at 116 DAT at 0–0.3 and 0.3–0.6 soil depths. Overall, there was a negative effect of both compost amendment and green manuring on yield. Green manuring and compost soil amendment improved soil chemical characteristics (i.e., SOM and C/N), as well as the plant N recovery, the IWUE, and the NAE. They increased the water retention capacity of the soil when the tobacco crop was deficit-irrigated and appeared to be promising practices to support the deficit irrigation strategy, contributing to reaching good agronomic results, although under the conditions of water shortage, and showing synergistic action in those conditions.

Suggested Citation

  • Maria Isabella Sifola & Linda Carrino & Eugenio Cozzolino & Mario Palladino & Mariarosaria Sicignano & Daniele Todisco & Luisa del Piano, 2025. "The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:769-:d:1570737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Isabella Sifola & Eugenio Cozzolino & Daniele Todisco & Mario Palladino & Mariarosaria Sicignano & Luisa del Piano, 2024. "Organic Fraction Municipal Solid Waste Compost and Horse Bean Green Manure Improve Sustainability of a Top-Quality Tobacco Cropping System: The Beneficial Effects on Soil and Plants," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    2. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    3. Abd El-Mageed, Taia A. & El- Samnoudi, Ibrahim M. & Ibrahim, Abd El-Aty M. & Abd El Tawwab, Ahmed R., 2018. "Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime," Agricultural Water Management, Elsevier, vol. 208(C), pages 431-439.
    4. Eekhout, J.P.C. & Delsman, I. & Baartman, J.E.M. & van Eupen, M. & van Haren, C. & Contreras, S. & Martínez-López, J. & de Vente, J., 2024. "How future changes in irrigation water supply and demand affect water security in a Mediterranean catchment," Agricultural Water Management, Elsevier, vol. 297(C).
    5. de Sosa, Laura L. & Sánchez-Piñero, Marta & Girón, Ignacio & Corell, Mireia & Madejón, Engracia, 2023. "Addition of compost changed responses of soil-tree system in olive groves in relation to the irrigation strategy," Agricultural Water Management, Elsevier, vol. 284(C).
    6. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    7. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    8. Teshome, Fitsum T. & Bayabil, Haimanote K. & Schaffer, Bruce & Ampatzidis, Yiannis & Hoogenboom, Gerrit & Singh, Aditya, 2023. "Exploring deficit irrigation as a water conservation strategy: Insights from field experiments and model simulation," Agricultural Water Management, Elsevier, vol. 289(C).
    9. Ding, Zheli & Ali, Esmat F. & Elmahdy, Ahmed M. & Ragab, Khaled E. & Seleiman, Mahmoud F. & Kheir, Ahmed M.S., 2021. "Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 244(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rady, Mohamed O.A. & Semida, Wael M. & Howladar, Saad.M. & Abd El-Mageed, Taia A., 2021. "Raised beds modulate physiological responses, yield and water use efficiency of wheat (Triticum aestivum L) under deficit irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    3. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    4. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    5. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    6. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    8. Pedras, C.M.G. & Pereira, L.S. & Gonalves, J.M., 2009. "MIRRIG: A decision support system for design and evaluation of microirrigation systems," Agricultural Water Management, Elsevier, vol. 96(4), pages 691-701, April.
    9. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    10. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Sandhu, O.S. & Gupta, R.K. & Thind, H.S. & Jat, M.L. & Sidhu, H.S. & Yadvinder-Singh,, 2019. "Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India," Agricultural Water Management, Elsevier, vol. 219(C), pages 19-26.
    12. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    14. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    15. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    16. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    17. Venot, Jean-Philippe & Reddy, V. Ratna & Umapathy, Deeptha, 2010. "Coping with drought in irrigated South India: Farmers' adjustments in Nagarjuna Sagar," Agricultural Water Management, Elsevier, vol. 97(10), pages 1434-1442, October.
    18. Ćosić, Marija & Djurović, Nevenka & Todorović, Mladen & Maletić, Radojka & Zečević, Bogoljub & Stričević, Ružica, 2015. "Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper," Agricultural Water Management, Elsevier, vol. 159(C), pages 139-147.
    19. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    20. Muniandy, Josilva M. & Yusop, Zulkifli & Askari, Muhamad, 2016. "Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum," Agricultural Water Management, Elsevier, vol. 169(C), pages 77-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:769-:d:1570737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.