Author
Listed:
- Christopher Tsang
(Energy House Labs, University of Salford, Manchester M5 4WT, UK)
- Ljubomir Jankovic
(Energy House Labs, University of Salford, Manchester M5 4WT, UK)
- Richard Fitton
(Energy House Labs, University of Salford, Manchester M5 4WT, UK)
- Grant Henshaw
(Energy House Labs, University of Salford, Manchester M5 4WT, UK)
Abstract
This paper aims to determine the optimal construction strategies for new-build houses in the UK to minimize heating energy demand and discomfort hours. This research utilizes a previously calibrated model of “The Future Home” in Energy House 2.0’s environmental chamber. Eight design variables were optimized including multiple building fabric specifications, air permeability rates, and heating setpoint temperatures. Three optimization scenarios were investigated: fixed heating setpoints, variable heating setpoints, and variable setpoints with comfort constraints. The analysis revealed that while fixed heating setpoints showed limited optimization potential, variable setpoint scenarios identified three distinct clusters of optimal solutions. The optimization consistently favored superior building fabric parameters, though air permeability solutions became more nuanced with variable heating control. When constrained to a maximum of 400 discomfort hours, solutions required elevated heating setpoints (22–23 °C) while maintaining high fabric specifications. These findings advance building optimization methodology by demonstrating the importance of heating control flexibility and comfort constraints in achieving optimal performance, while the use of a calibrated model in controlled conditions overcomes the limitations of previous studies that relied on uncalibrated or hypothetical models. As in situ field measurements of short- and long-term building performance are often subjected to disruptions, delays, and uncertainties, the building performance research under controlled conditions reported in this article will lead towards the achievement of net zero targets in a timelier manner and with more certainty.
Suggested Citation
Christopher Tsang & Ljubomir Jankovic & Richard Fitton & Grant Henshaw, 2025.
"A Multi-Objective Design Optimization of a New-Build Future Homes Standard House in Controlled Conditions,"
Sustainability, MDPI, vol. 17(2), pages 1-15, January.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:2:p:724-:d:1569687
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:724-:d:1569687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.