IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p622-d1567270.html
   My bibliography  Save this article

The Criticality of the Digital Economy in Environmental Sustainability: Fresh Insights from a Wavelet-Based Quantile-on-Quantile Approach

Author

Listed:
  • Xiaoqing Wong

    (School of Business, Wuchang University of Technology, Wuhan 430223, China)

  • Wenhao Kang

    (Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Jisu Kim

    (School of Applied Economics, Renmin University of China, Beijing 100872, China)

  • Yingying Xu

    (School of Public Administration, Beihang University, Beijing 100191, China)

  • Ankang Wang

    (School of Economics, Zhejiang University, Hangzhou 310058, China)

Abstract

Achieving environmental sustainability has become an urgent priority in the era of rapid digital economic expansion, which presents both opportunities and challenges for environmental sustainable development. This study investigates the impact of digital economy (DIE) on environmental sustainability (ENS) through the dual dimensions of digital industrialization (DII) and industrial digitalization (IND), employing the wavelet-based quantile-on-quantile regression method to capture both quantile dependencies and temporal variations. The results reveal that DIE positively impacts ENS in the long term, while its short-term effects are mixed, with positive effects at lower and higher quantiles but negative impacts at mid-range quantiles of [0.35–0.45] and [0.65–0.7]. Specifically, DII exerts a predominantly negative short-term effect on ENS due to the environmental costs of digital infrastructure expansion, but turns positive in the long term as digital industrialization matures, especially in [0.85–0.95]. IND, conversely, exerts a consistently positive impact on ENS in both short- and long-term scenarios, highlighting its role in enhancing industrial efficiency and reducing emissions. These results emphasize the need for targeted policies, including prioritizing industrial digitalization, developing green infrastructure, and adopting phased digital development strategies to maximize environmental benefits.

Suggested Citation

  • Xiaoqing Wong & Wenhao Kang & Jisu Kim & Yingying Xu & Ankang Wang, 2025. "The Criticality of the Digital Economy in Environmental Sustainability: Fresh Insights from a Wavelet-Based Quantile-on-Quantile Approach," Sustainability, MDPI, vol. 17(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:622-:d:1567270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    2. Yaozhi Xu & Liling Xu, 2023. "The Convergence between Digital Industrialization and Industrial Digitalization and Export Technology Complexity: Evidence from China," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    3. Lee, Chien-Chiang & Lou, Runchi & Wang, Fuhao, 2023. "Digital financial inclusion and poverty alleviation: Evidence from the sustainable development of China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 418-434.
    4. Alina Sorescu & Martin Schreier, 2021. "Innovation in the digital economy: a broader view of its scope, antecedents, and consequences," Journal of the Academy of Marketing Science, Springer, vol. 49(4), pages 627-631, July.
    5. Su, Chi Wei & Liu, Fangying & Stefea, Petru & Umar, Muhammad, 2023. "Does technology innovation help to achieve carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1-14.
    6. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    7. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    8. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    9. Wang, Xiaoqing & Sun, Xing & Oprean-Stan, Camelia & Chang, Tsangyao, 2023. "What role does global value chain participation play in emissions embodied in trade? New evidence from value-added trade," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1205-1223.
    10. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Financial development, technological innovation and energy security: Evidence from Chinese provincial experience," Energy Economics, Elsevier, vol. 112(C).
    11. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).
    12. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    13. Ribeiro-Navarrete, Samuel & Botella-Carrubi, Dolores & Palacios-Marqués, Daniel & Orero-Blat, Maria, 2021. "The effect of digitalization on business performance: An applied study of KIBS," Journal of Business Research, Elsevier, vol. 126(C), pages 319-326.
    14. Hubert Gijzen, 2013. "Big data for a sustainable future," Nature, Nature, vol. 502(7469), pages 38-38, October.
    15. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    16. Wang, Xiaoqing & Qin, Chuan & Liu, Yufeng & Tanasescu, Cristina & Bao, Jiangnan, 2023. "Emerging enablers of green low-carbon development: Do digital economy and open innovation matter?," Energy Economics, Elsevier, vol. 127(PA).
    17. Haftu, Girmay Giday, 2019. "Information communications technology and economic growth in Sub-Saharan Africa: A panel data approach," Telecommunications Policy, Elsevier, vol. 43(1), pages 88-99.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaoqing & Qin, Chuan & Liu, Yufeng & Tanasescu, Cristina & Bao, Jiangnan, 2023. "Emerging enablers of green low-carbon development: Do digital economy and open innovation matter?," Energy Economics, Elsevier, vol. 127(PA).
    2. Ge Li & Da Gao & Xiao Xia Shi, 2024. "How does information and communication technology affect carbon efficiency? Evidence at China's city level," Energy & Environment, , vol. 35(8), pages 4272-4293, December.
    3. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    4. Taqdees Fatima & Bingxiang Li & Shahab Alam Malik & Dan Zhang, 2023. "The Spatial Effect of Industrial Intelligence on High-Quality Green Development of Industry under Environmental Regulations and Low Carbon Intensity," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    5. Cao, Fangzhi & Su, Chi-Wei & Sun, Dian & Qin, Meng & Umar, Muhammad, 2024. "U.S. monetary policy: The pushing hands of crude oil price?," Energy Economics, Elsevier, vol. 134(C).
    6. Kangni Lyu & Shuwang Yang & Kun Zheng & Yao Zhang, 2023. "How Does the Digital Economy Affect Carbon Emission Efficiency? Evidence from Energy Consumption and Industrial Value Chain," Energies, MDPI, vol. 16(2), pages 1-20, January.
    7. Zhang, Yiren & Ran, Congjing, 2023. "Effect of digital economy on air pollution in China? New evidence from the “National Big Data Comprehensive Pilot Area” policy," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 986-1004.
    8. Liu, Fangying & Su, Chi Wei & Tao, Ran & Qin, Meng & Umar, Muhammad, 2024. "Fintech and aluminium: Strategic enablers of climate change mitigation and sustainable mineral policy," Resources Policy, Elsevier, vol. 91(C).
    9. Lyu, Yanwei & Zhang, Jinning & Wang, Wenqiang & Li, Yutao & Geng, Yong, 2024. "Toward low carbon development through digital economy: A new perspective of factor market distortion," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
    10. Xinfeng Chang & Jian Su & Zihe Yang, 2022. "The Effect of Digital Economy on Urban Green Transformation—An Empirical Study Based on the Yangtze River Delta City Cluster in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    11. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    12. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    13. Sun, Chuanwang & Khan, Anwar & Xue, Juntao & Huang, Xiaoyong, 2024. "Are digital economy and financial structure driving renewable energy technology innovations: A major eight countries perspective," Applied Energy, Elsevier, vol. 362(C).
    14. Wang, Xiaoqing & Jin, Wenxin & Qin, Meng & Su, Chi-Wei & Umar, Muhammad, 2024. "Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?," Energy, Elsevier, vol. 301(C).
    15. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    17. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    18. Wenfei Song & Xianfeng Han, 2024. "Does the digital economy contribute to China’s energy transition?," Economic Change and Restructuring, Springer, vol. 57(5), pages 1-25, October.
    19. Wang, Xiaoqing & Sun, Xing & Oprean-Stan, Camelia & Chang, Tsangyao, 2023. "What role does global value chain participation play in emissions embodied in trade? New evidence from value-added trade," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1205-1223.
    20. Lee, Chien-Chiang & Chang, Yu-Fang & Wang, En-Ze, 2022. "Crossing the rivers by feeling the stones: The effect of China's green credit policy on manufacturing firms' carbon emission intensity," Energy Economics, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:622-:d:1567270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.