IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p432-d1562644.html
   My bibliography  Save this article

Reinforcement Learning of a Six-DOF Industrial Manipulator for Pick-and-Place Application Using Efficient Control in Warehouse Management

Author

Listed:
  • Ahmed Iqdymat

    (Department of Automation and Industrial Informatics, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania)

  • Grigore Stamatescu

    (Department of Automation and Industrial Informatics, National University of Science and Technology Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania)

Abstract

This study investigates the integration of reinforcement learning (RL) with optimal control to enhance precision and energy efficiency in industrial robotic manipulation. A novel framework is proposed, combining Deep Deterministic Policy Gradient (DDPG) with a Linear Quadratic Regulator (LQR) controller, specifically applied to the ABB IRB120, a six-degree-of-freedom (6-DOF) industrial manipulator, for pick-and-place tasks in warehouse automation. The methodology employs an actor–critic RL architecture with a 27-dimensional state input and a 6-dimensional joint action output. The RL agent was trained using MATLAB’s Reinforcement Learning Toolbox and integrated with ABB’s RobotStudio simulation environment via TCP/IP communication. LQR controllers were incorporated to optimize joint-space trajectory tracking, minimizing energy consumption while ensuring precise control. The novelty of this research lies in its synergistic combination of RL and LQR control, addressing energy efficiency and precision simultaneously—an area that has seen limited exploration in industrial robotics. Experimental validation across 100 diverse scenarios confirmed the framework’s effectiveness, achieving a mean positioning accuracy of 2.14 mm (a 28% improvement over traditional methods), a 92.5% success rate in pick-and-place tasks, and a 22.7% reduction in energy consumption. The system demonstrated stable convergence after 458 episodes and maintained a mean joint angle error of 4.30°, validating its robustness and efficiency. These findings highlight the potential of RL for broader industrial applications. The demonstrated accuracy and success rate suggest its applicability to complex tasks such as electronic component assembly, multi-step manufacturing, delicate material handling, precision coordination, and quality inspection tasks like automated visual inspection, surface defect detection, and dimensional verification. Successful implementation in such contexts requires addressing challenges including task complexity, computational efficiency, and adaptability to process variability, alongside ensuring safety, reliability, and seamless system integration. This research builds upon existing advancements in warehouse automation, inverse kinematics, and energy-efficient robotics, contributing to the development of adaptive and sustainable control strategies for industrial manipulators in automated environments.

Suggested Citation

  • Ahmed Iqdymat & Grigore Stamatescu, 2025. "Reinforcement Learning of a Six-DOF Industrial Manipulator for Pick-and-Place Application Using Efficient Control in Warehouse Management," Sustainability, MDPI, vol. 17(2), pages 1-25, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:432-:d:1562644
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    2. Ning Wang & Zhe Li & Xiaolong Liang & Yueqi Hou & Aiwu Yang & Ardashir Mohammadzadeh, 2023. "A Review of Deep Reinforcement Learning Methods and Military Application Research," Mathematical Problems in Engineering, Hindawi, vol. 2023, pages 1-16, April.
    3. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2023. "Intelligent Control of Robots with Minimal Power Consumption in Pick-and-Place Operations," Energies, MDPI, vol. 16(21), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    3. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    4. He, Jing & Liu, Xinglu & Duan, Qiyao & Chan, Wai Kin (Victor) & Qi, Mingyao, 2023. "Reinforcement learning for multi-item retrieval in the puzzle-based storage system," European Journal of Operational Research, Elsevier, vol. 305(2), pages 820-837.
    5. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    6. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    8. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    9. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2024. "Improving order picking efficiency through storage assignment optimization in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 316(2), pages 718-732.
    11. Chen, Wanying (Amanda) & De Koster, René & Gong, Yeming, 2023. "Warehouses without aisles: Layout design of a multi-deep rack climbing robotic system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. Kishore Bhoopalam, A. & van den Berg, R. & Agatz, N.A.H. & Chorus, C.G., 2021. "The long road to automated trucking: Insights from driver focus groups," ERIM Report Series Research in Management ERS-2021-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Emde, Simon & Tahirov, Nail & Gendreau, Michel & Glock, Christoph H., 2021. "Routing automated lane-guided transport vehicles in a warehouse handling returns," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1085-1098.
    14. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    15. Maria Giuffrida & Riccardo Mangiaracina & Umar Burki, 2021. "Cloud-Based Booking Platforms in Warehouse Operations," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    16. Michele Barbato & Alberto Ceselli & Giovanni Righini, 2024. "A polynomial-time dynamic programming algorithm for an optimal picking problem in automated warehouses," Journal of Scheduling, Springer, vol. 27(4), pages 393-407, August.
    17. Magazzino, Cosimo & Alola, Andrew Adewale & Schneider, Nicolas, 2021. "The trilemma of innovation, logistics performance, and environmental quality in 25 topmost logistics countries: a quantile regression evidence," LSE Research Online Documents on Economics 117654, London School of Economics and Political Science, LSE Library.
    18. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    19. Yi Li & Zhiyang Li, 2022. "Shuttle-Based Storage and Retrieval System: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    20. Lu Zhen & Jingwen Wu & Haolin Li & Zheyi Tan & Yingying Yuan, 2023. "Scheduling multiple types of equipment in an automated warehouse," Annals of Operations Research, Springer, vol. 322(2), pages 1119-1141, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:432-:d:1562644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.