IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p49-d1553122.html
   My bibliography  Save this article

Cross-National Findings of Factors Affecting the Acceptance of AI-Based Sustainable Fintech

Author

Listed:
  • Sujin Park

    (Department of Global Business, Kyonggi University, Suwon 16227, Republic of Korea)

  • Sungjoon Yoon

    (Department of Global Business, Kyonggi University, Suwon 16227, Republic of Korea)

Abstract

This study utilized mixed (qualitative and quantitative) methods to discover the current research trends for AI in sustainable Fintech and to validate a research model through empirical analysis. The primary purpose of this research is to explore the factors influencing the acceptance of AI tools within the sustainable Fintech industry through a cross-national perspective, identifying key benefit and sacrifice dimensions, along with sustainability considerations, that affect users’ intentions to adopt AI tools. Drawing on a bibliometric keywords approach, we first conducted an overall review of academic literature using Web of Science and VOSviewer (version 1.6.17), covering areas related to AI applications in Fintech and sustainable Fintech practices. Additionally, for a cross-national study, this study built and validated a conceptual framework on the intention to use AI tools by selecting subjects from Republic of Korea and China. As core theoretical premises of the conceptual framework, the study drew on the Value-Based Adoption Model (VAM) and the Technology Acceptance Model (TAM). Furthermore, we extended the TAM to embrace sustainable dimensions (perceived responsibility and perceived transparency). Overall, the study concludes that AI not only improves Fintech efficiency but also significantly contributes to sustainable development, suggesting collaboration between experts in AI, finance, sustainability, and other relevant fields for more research on AI integration with sustainable Fintech management. This research contributes to existing literature by highlighting the synergistic benefits of combining AI and sustainable Fintech and offers practical insights for industry practitioners and policymakers.

Suggested Citation

  • Sujin Park & Sungjoon Yoon, 2024. "Cross-National Findings of Factors Affecting the Acceptance of AI-Based Sustainable Fintech," Sustainability, MDPI, vol. 17(1), pages 1-32, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:49-:d:1553122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuela Veloso & Tucker Balch & Daniel Borrajo & Prashant Reddy & Sameena Shah, 2021. "Artificial intelligence research in finance: discussion and examples," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 37(3), pages 564-584.
    2. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    3. Asrar Ahmed Sabir & Iftikhar Ahmad & Hassan Ahmad & Muhammad Rafiq & Muhammad Asghar Khan & Neelum Noreen, 2023. "Consumer Acceptance and Adoption of AI Robo-Advisors in Fintech Industry," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeideh Sharifi fard & Ezhar Tamam & Md Salleh Hj Hassan & Moniza Waheed & Zeinab Zaremohzzabieh, 2016. "Factors affecting Malaysian university students’ purchase intention in social networking sites," Cogent Business & Management, Taylor & Francis Journals, vol. 3(1), pages 1182612-118, December.
    2. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    3. Philippe Cohard, 2020. "Information Systems Values: A Study of the Intranet in Three French Higher Education Institutions," Post-Print hal-02987225, HAL.
    4. Melih Engin & Fatih Gürses, 2019. "Adoption of Hospital Information Systems in Public Hospitals in Turkey: An Analysis with the Unified Theory of Acceptance and Use of Technology Model," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1-19, October.
    5. Morosan, Cristian, 2016. "An empirical examination of U.S. travelers’ intentions to use biometric e-gates in airports," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 120-128.
    6. Tsung Teng Chen, 2012. "The development and empirical study of a literature review aiding system," Scientometrics, Springer;Akadémiai Kiadó, vol. 92(1), pages 105-116, July.
    7. Abdesamad Zouine & Pierre Fenies, 2014. "The Critical Success Factors Of The ERP System Project: A Meta-Analysis Methodology," Post-Print hal-01419785, HAL.
    8. Debora Bettiga & Lucio Lamberti & Emanuele Lettieri, 2020. "Individuals’ adoption of smart technologies for preventive health care: a structural equation modeling approach," Health Care Management Science, Springer, vol. 23(2), pages 203-214, June.
    9. Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
    10. Talukder, Md. Shamim & Sorwar, Golam & Bao, Yukun & Ahmed, Jashim Uddin & Palash, Md. Abu Saeed, 2020. "Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    11. Fang Li & Sheng Zhang & Yuhuan Jin, 2018. "Sustainability of University Technology Transfer: Mediating Effect of Inventor’s Technology Service," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    12. Waqar Younas & K. Ramanathan Kalimuthu, 2021. "Telecom microfinance banking versus commercial banking: a battle in the financial services sector," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 26(2), pages 67-80, June.
    13. Sarv Devaraj & Robert F. Easley & J. Michael Crant, 2008. "Research Note ---How Does Personality Matter? Relating the Five-Factor Model to Technology Acceptance and Use," Information Systems Research, INFORMS, vol. 19(1), pages 93-105, March.
    14. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    15. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    16. Proserpio, Luigi & Magni, Massimo, 2012. "Teaching without the teacher? Building a learning environment through computer simulations," International Journal of Information Management, Elsevier, vol. 32(2), pages 99-105.
    17. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    18. Chen-Yuan Chen & Bih-Yaw Shih & Shih-Hsien Yu, 2012. "Disaster prevention and reduction for exploring teachers’ technology acceptance using a virtual reality system and partial least squares techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1217-1231, July.
    19. Paul Juinn Bing Tan, 2013. "Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan," SAGE Open, , vol. 3(4), pages 21582440135, October.
    20. Schweizer, T.S., 2002. "Managing interactions between technological and stylistic innovation in the media industries, insights from the introduction of ebook technology in the publishing industry," ERIM Report Series Research in Management ERS-2002-16-ORG, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:49-:d:1553122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.