IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2024i1p172-d1555756.html
   My bibliography  Save this article

Risk Management Model of Urban Resilience Under a Changing Climate

Author

Listed:
  • Agnieszka Blokus-Dziula

    (Department of Modeling and Mathematical Methods in Transport, Faculty of Navigation, Gdynia Maritime University, 3 Al. Jana Pawla II St., 81-225 Gdynia, Poland)

  • Przemysław Dziula

    (Department of Navigation, Faculty of Navigation, Gdynia Maritime University, 3 Al. Jana Pawla II St., 81-225 Gdynia, Poland)

Abstract

Climate change is inevitable and intensifying. The consequences are particularly severe for urban areas, which are becoming increasingly populated. This has resulted in the necessity to analyze the effects of climate change on the functioning of urban areas and build and plan strategies for strengthening the resilience of cities and their infrastructures and for predicting climate change and the threats associated with it. This study proposes a multi-criteria model for analyzing and assessing the risk arising from climate change to urban areas by determining the probability of the occurrence of various threats and their potential consequences for urbanization. The model takes into account the exposure and vulnerability of assets, systems, infrastructure, and communities to the significant consequences of climate change and the occurrence of hazardous events. Bayesian probability theory was proposed to predict the probability of hazardous event occurrence, taking into account climate change and the statistical uncertainty in estimating extreme hazard impacts. The proposed model allows us to include vulnerability drivers and resilience factors and their effect on the functioning of a city and its critical infrastructures and, consequently, the lives and well-being of residents. The model can be applied to risk management and planning strategies for urban resilience strengthening.

Suggested Citation

  • Agnieszka Blokus-Dziula & Przemysław Dziula, 2024. "Risk Management Model of Urban Resilience Under a Changing Climate," Sustainability, MDPI, vol. 17(1), pages 1-23, December.
  • Handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:172-:d:1555756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/1/172/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/1/172/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arka Pandit & John C. Crittenden, 2016. "Index of network resilience for urban water distribution systems," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 12(1/2), pages 120-142.
    2. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    3. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    4. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    5. Agnieszka Blokus & Przemysław Dziula, 2021. "Relations of Imperfect Repairs to Critical Infrastructure Maintenance Costs," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    6. Xudong Zhao & Zhilong Chen & Huadong Gong, 2015. "Effects Comparison of Different Resilience Enhancing Strategies for Municipal Water Distribution Network: A Multidimensional Approach," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-16, August.
    7. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    9. Raúl Baños & Juan Reca & Juan Martínez & Consolación Gil & Antonio Márquez, 2011. "Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2351-2366, August.
    10. Umberto Berardi, 2013. "Sustainability assessment of urban communities through rating systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1573-1591, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    5. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Liu, Wei & Song, Zhaoyang & Ouyang, Min, 2020. "Lifecycle operational resilience assessment of urban water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    8. Liu, Wei & Song, Zhaoyang & Ouyang, Min & Li, Jie, 2020. "Recovery-based seismic resilience enhancement strategies of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    12. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    15. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    16. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    17. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    18. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    19. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Li, Ruiying & Gao, Ying, 2022. "On the component resilience importance measures for infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2024:i:1:p:172-:d:1555756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.