IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3858-d1388673.html
   My bibliography  Save this article

The Impact of AI in Sustainable Development Goal Implementation: A Delphi Study

Author

Listed:
  • Simon Ofori Ametepey

    (Centre for Sustainable Development (CenSUD), Koforidua Technical University, Koforidua 03420, Ghana
    Department of Construction Management and Quantity Surveying, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2094, South Africa
    Department of Building Technology, Faculty of Built Environment, Koforidua Technical University, Koforidua 03420, Ghana)

  • Clinton Aigbavboa

    (Department of Construction Management and Quantity Surveying, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg 2094, South Africa)

  • Wellington Didibhuku Thwala

    (Department of Civil Engineering, Faculty of Engineering, Built Environment and Information Technology, Walter Sisulu University, East London 5200, South Africa)

  • Hutton Addy

    (Centre for Sustainable Development (CenSUD), Koforidua Technical University, Koforidua 03420, Ghana)

Abstract

Artificial intelligence emerges as a powerful catalyst poised to reshape the global sustainability landscape by facilitating the attainment of Sustainable Development Goals (SDGs). This comprehensive Delphi study meticulously probes the insights of domain experts, shedding light on the strategic utilization of AI to advance these critical sustainability objectives. Employing rigorous statistical techniques, encompassing measures of central tendency and interquartile deviation, this research scrutinizes consensus dynamics among experts and elucidates potential variations in their viewpoints. The findings resoundingly convey experts’ collective positive perspective regarding AI’s pivotal role in propelling the SDGs forward. Through two iterative rounds of extensive discussions, a compelling consensus crystallizes—AI indeed exerts an overall positive impact, exemplified by a robust mean score of 78.8%. Intriguingly, distinct SDGs manifest varied propensities toward AI intervention, with Goals 6, 7, 8, 9, 11, 13, 14, and 15 basking in the radiance of highly positive impacts. Goals 1, 2, 3, 4, 5, 10, and 12 exhibit positive impact scores, indicating a juncture ripe for positive advancements. Meanwhile, Goal 16 and Goal 17 languish with neutral scores, signifying a juncture demanding nuanced deliberations about AI’s impact on peace, justice, and strong institutions as well as on partnerships for the goals, respectively. This paper underscores AI as a formidable instrument poised to address humanity’s most pressing challenges while harmonizing seamlessly with the overarching SDG objectives. It gracefully dovetails into established practices across pivotal domains such as health, education, and resilient infrastructures, amplifying the collective global endeavor to navigate the path toward a more sustainable future.

Suggested Citation

  • Simon Ofori Ametepey & Clinton Aigbavboa & Wellington Didibhuku Thwala & Hutton Addy, 2024. "The Impact of AI in Sustainable Development Goal Implementation: A Delphi Study," Sustainability, MDPI, vol. 16(9), pages 1-76, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3858-:d:1388673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Fuso Nerini & Julia Tomei & Long Seng To & Iwona Bisaga & Priti Parikh & Mairi Black & Aiduan Borrion & Catalina Spataru & Vanesa Castán Broto & Gabrial Anandarajah & Ben Milligan & Yacob Mu, 2018. "Mapping synergies and trade-offs between energy and the Sustainable Development Goals," Nature Energy, Nature, vol. 3(1), pages 10-15, January.
    2. Dingler, Annika & Enkel, Ellen, 2016. "Socialization and innovation: Insights from collaboration across industry boundaries," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 50-60.
    3. Shivam Gupta & Jazmin Campos Zeballos & Gema del Río Castro & Ana Tomičić & Sergio Andrés Morales & Maya Mahfouz & Isimemen Osemwegie & Vicky Phemia Comlan Sessi & Marina Schmitz & Nady Mahmoud & Mnen, 2023. "Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-37, April.
    4. David Jungwirth & Daniela Haluza, 2023. "Artificial Intelligence and Public Health: An Exploratory Study," IJERPH, MDPI, vol. 20(5), pages 1-12, March.
    5. Tara Caetano & Harald Winker & Joanna Depledge, 2020. "Towards zero carbon and zero poverty: integrating national climate change mitigation and sustainable development goals," Climate Policy, Taylor & Francis Journals, vol. 20(7), pages 773-778, July.
    6. Shin-Cheng Yeh & Ai-Wei Wu & Hui-Ching Yu & Homer C. Wu & Yi-Ping Kuo & Pei-Xuan Chen, 2021. "Public Perception of Artificial Intelligence and Its Connections to the Sustainable Development Goals," Sustainability, MDPI, vol. 13(16), pages 1-34, August.
    7. Ricardo Vinuesa & Hossein Azizpour & Iolanda Leite & Madeline Balaam & Virginia Dignum & Sami Domisch & Anna Felländer & Simone Daniela Langhans & Max Tegmark & Francesco Fuso Nerini, 2020. "The role of artificial intelligence in achieving the Sustainable Development Goals," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilson, Christopher & van der Velden, Maja, 2022. "Sustainable AI: An integrated model to guide public sector decision-making," Technology in Society, Elsevier, vol. 68(C).
    2. Walter Leal Filho & Peter Yang & João Henrique Paulino Pires Eustachio & Anabela Marisa Azul & Joshua C. Gellers & Agata Gielczyk & Maria Alzira Pimenta Dinis & Valerija Kozlova, 2023. "Deploying digitalisation and artificial intelligence in sustainable development research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4957-4988, June.
    3. Shivam Gupta & Jakob Rhyner, 2022. "Mindful Application of Digitalization for Sustainable Development: The Digitainability Assessment Framework," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    4. Mohammed M. Mabkhot & Pedro Ferreira & Antonio Maffei & Primož Podržaj & Maksymilian Mądziel & Dario Antonelli & Michele Lanzetta & Jose Barata & Eleonora Boffa & Miha Finžgar & Łukasz Paśko & Paolo M, 2021. "Mapping Industry 4.0 Enabling Technologies into United Nations Sustainability Development Goals," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    5. Tan Yigitcanlar, 2021. "Greening the Artificial Intelligence for a Sustainable Planet: An Editorial Commentary," Sustainability, MDPI, vol. 13(24), pages 1-9, December.
    6. Hemal Chowdhury & Tamal Chowdhury & Ayyoob Sharifi & Richard Corkish & Sadiq M. Sait, 2022. "Role of Biogas in Achieving Sustainable Development Goals in Rohingya Refugee Camps in Bangladesh," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Henrik Skaug Sætra, 2021. "AI in Context and the Sustainable Development Goals: Factoring in the Unsustainability of the Sociotechnical System," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    8. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    9. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    10. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    11. Rafael Martínez-Peláez & Alberto Ochoa-Brust & Solange Rivera & Vanessa G. Félix & Rodolfo Ostos & Héctor Brito & Ramón A. Félix & Luis J. Mena, 2023. "Role of Digital Transformation for Achieving Sustainability: Mediated Role of Stakeholders, Key Capabilities, and Technology," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    12. Inyoung Park & Jieon Lee & Jungwoo Nam & Yuri Jo & Daeho Lee, 2022. "Which networking strategy improves ICT startup companies' technical efficiency?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 2434-2443, September.
    13. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Stéphanie Camaréna, 2021. "Engaging with Artificial Intelligence (AI) with a Bottom-Up Approach for the Purpose of Sustainability: Victorian Farmers Market Association, Melbourne Australia," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    15. Prashamsa Thapa & Brijesh Mainali & Shobhakar Dhakal, 2023. "Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal?," Energies, MDPI, vol. 16(1), pages 1-32, January.
    16. Keeheon Lee, 2021. "A Systematic Review on Social Sustainability of Artificial Intelligence in Product Design," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    17. Gianluca MISURACA & Colin van Noordt, 2020. "AI Watch - Artificial Intelligence in public services: Overview of the use and impact of AI in public services in the EU," JRC Research Reports JRC120399, Joint Research Centre.
    18. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    19. Sick, Nathalie & Preschitschek, Nina & Leker, Jens & Bröring, Stefanie, 2019. "A new framework to assess industry convergence in high technology environments," Technovation, Elsevier, vol. 84, pages 48-58.
    20. Priti Parikh & Corina Shika Kwami & Vivekanand Vivekanand & Kunwar Paritosh & Monica Lakhanpaul, 2019. "Linkages between Respiratory Symptoms in Women and Biofuel Use: Regional Case Study of Rajasthan, India," IJERPH, MDPI, vol. 16(19), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3858-:d:1388673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.