IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3477-d1380002.html
   My bibliography  Save this article

Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change

Author

Listed:
  • André Fonseca

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

  • José Cruz

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

  • Helder Fraga

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

  • Cristina Andrade

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
    Natural Hazards Research Center (NHRC.ipt), Instituto Politécnico de Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal)

  • Joana Valente

    (Symington Family Estates, Vinhos SA, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal)

  • Fernando Alves

    (Symington Family Estates, Vinhos SA, Travessa Barão de Forrester 86, 4431-901 Vila Nova de Gaia, Portugal)

  • Ana Carina Neto

    (Esporão, S.A., Avenida do Restelo 44, 1400-315 Lisboa, Portugal)

  • Rui Flores

    (Esporão, S.A., Avenida do Restelo 44, 1400-315 Lisboa, Portugal)

  • João A. Santos

    (Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal)

Abstract

Understanding microclimate spatial variability is crucial for sustainable and optimised grape production within vineyard plots. By employing a combination of a microclimate model (NicheMapR) and multiple climate data sources, this study aimed to achieve microclimatic analysis in two vineyard plots, Quinta do Bomfim (northern Portugal) and Herdade do Esporão (southern Portugal). This approach provides an innovative 10 m spatial resolution for climate variables. This study incorporated local station hourly data with quantile mapping bias correction on the ERA5-land data. The microclimate model output was employed to perform bias correction on a EURO-CORDEX model ensemble. Climate extreme and bioclimatic indices specifically targeted to viticulture were calculated for each vineyard plot. The 10 m scale was analysed to identify potential shifts in temperature extremes, precipitation patterns, and other crucial climatic variables for grape cultivation within each specific plot. The significance of microclimate analyses was higher in areas with intricate topography, while in areas with smooth slopes, the variation of climatic variables was determined to be negligible. There was a projected increase in the median temperature of approximately 3.5 °C and 3.6 °C and a decrease in precipitation of approximately 98 mm and 105 mm in Quinta do Bomfim and Herdade do Esporão, respectively, when comparing a future scenario for the period 2071–2100 against the historical period (1981–2010). Hence, this study offers a comprehensive and future-oriented method for analysing microclimates in vineyard plots. By incorporating geospatial data, ERA5-land data, and the microclimate NicheMapR model, this research aimed to enhance the understanding of current microclimates and future climate scenarios for viticulturists.

Suggested Citation

  • André Fonseca & José Cruz & Helder Fraga & Cristina Andrade & Joana Valente & Fernando Alves & Ana Carina Neto & Rui Flores & João A. Santos, 2024. "Vineyard Microclimatic Zoning as a Tool to Promote Sustainable Viticulture under Climate Change," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3477-:d:1380002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Etienne Neethling & Théo Petitjean & Hervé Quénol & Gérard Barbeau, 2017. "Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 777-803, June.
    2. van Leeuwen, Cornelis & Darriet, Philippe, 2016. "The Impact of Climate Change on Viticulture and Wine Quality," Journal of Wine Economics, Cambridge University Press, vol. 11(1), pages 150-167, May.
    3. Nikolaos Karapetsas & Thomas K. Alexandridis & George Bilas & Serafeim Theocharis & Stefanos Koundouras, 2023. "Delineating Natural Terroir Units in Wine Regions Using Geoinformatics," Agriculture, MDPI, vol. 13(3), pages 1-18, March.
    4. E. M. B. M. Karunathilake & Anh Tuan Le & Seong Heo & Yong Suk Chung & Sheikh Mansoor, 2023. "The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture," Agriculture, MDPI, vol. 13(8), pages 1-26, August.
    5. Zarrouk, Olfa & Garcia-Tejero, Ivan & Pinto, Clara & Genebra, Tania & Sabir, Farzana & Prista, Catarina & David, Teresa Soares & Loureiro-Dias, Maria C. & Chave, Maria Manuela, 2016. "Aquaporins isoforms in cv. Touriga Nacional grapevine under water stress and recovery—Regulation of expression in leaves and roots," Agricultural Water Management, Elsevier, vol. 164(P1), pages 167-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    2. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    3. Naulleau, Audrey & Gary, Christian & Prévot, Laurent & Vinatier, Fabrice & Hossard, Laure, 2022. "How can winegrowers adapt to climate change? A participatory modeling approach in southern France," Agricultural Systems, Elsevier, vol. 203(C).
    4. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 0. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899.
    5. Miroslava Navrátilová & Markéta Beranová & Lucie Severová & Karel Šrédl & Roman Svoboda & Josef Abrhám, 2020. "The Impact of Climate Change on the Sugar Content of Grapes and the Sustainability of their Production in the Czech Republic," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    6. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    7. Anastasios Michailidis & Chrysanthi Charatsari & Thomas Bournaris & Efstratios Loizou & Aikaterini Paltaki & Dimitra Lazaridou & Evagelos D. Lioutas, 2024. "A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies," Agriculture, MDPI, vol. 14(1), pages 1-12, January.
    8. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Abelardo García-Martín & Luis L. Paniagua & Francisco J. Rebollo, 2022. "Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    9. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    10. Luciana Di Gregorio & Lorenzo Nolfi & Arianna Latini & Nikolaos Nikoloudakis & Nils Bunnefeld & Maurizio Notarfonso & Roberta Bernini & Ioannis Manikas & Annamaria Bevivino, 2024. "Getting (ECO)Ready: Does EU Legislation Integrate Up-to-Date Scientific Data for Food Security and Biodiversity Preservation Under Climate Change?," Sustainability, MDPI, vol. 16(23), pages 1-21, December.
    11. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    12. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    13. Sergio Monteleone & Edmilson Alves de Moraes & Roberto Max Protil & Brenno Tondato de Faria & Rodrigo Filev Maia, 2024. "Proposal of a Model of Irrigation Operations Management for Exploring the Factors That Can Affect the Adoption of Precision Agriculture in the Context of Agriculture 4.0," Agriculture, MDPI, vol. 14(1), pages 1-33, January.
    14. Daria Maciejewska & Dawid Olewnicki & Dagmara Stangierska-Mazurkiewicz & Marcin Tyminski & Piotr Latocha, 2024. "Impact of Climate Change on the Development of Viticulture in Central Poland: Autoregression Modeling SAT Indicator," Agriculture, MDPI, vol. 14(5), pages 1-18, May.
    15. Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
    16. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    17. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    18. Deniz Uztürk & Gülçin Büyüközkan, 2023. "Strategic Analysis for Advancing Smart Agriculture with the Analytic SWOT/PESTLE Framework: A Case for Turkey," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
    19. Mariana Guerra & Fátima Ferreira & Ana Alexandra Oliveira & Teresa Pinto & Carlos A. Teixeira, 2024. "Drivers of Environmental Sustainability in the Wine Industry: A Life Cycle Assessment Approach," Sustainability, MDPI, vol. 16(13), pages 1-20, June.
    20. Jung-Kyu Lee & Ye-Hun Lee & Dong-Hoon Lee, 2024. "Proximal Absorbance Calibration Method Using an Embedded Blank Reference RGB Sensor for Determination of Ion Concentrations," Agriculture, MDPI, vol. 14(12), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3477-:d:1380002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.