IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3110-d1372337.html
   My bibliography  Save this article

A Transformer Heavy Overload Spatiotemporal Distribution Prediction Ensemble under Imbalanced and Nonlinear Data Scenarios

Author

Listed:
  • Yanzheng Liu

    (International College of Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Chenhao Sun

    (School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Xin Yang

    (School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Zhiwei Jia

    (School of Electrical & Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Jianhong Su

    (International College of Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Zhijie Guo

    (International College of Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Abstract

As a crucial component of power systems, distribution transformers are indispensable to ensure the sustainability of power supply. In addition, unhealthy transformers can lead to wasted energy and environmental pollution. Thus, accurate assessments and predictions of their health statuses have become a top priority. Unlike assumed ideal environments, however, some complex data distributions in practical scenarios lead to more difficulties in diagnosis. One challenge here is the potential imbalanced distribution of data factors since sparsely occurring factors along with some Unusual High-Risk (UHR) components, whose appearance may also damage transformer operations, can easily be neglected. Another is that the importance weight of data components is simply calculated according to their frequency or proportion, which may not always be reasonable in real nonlinear data scenes. With such motivations, this paper proposes a novel integrated method combining the Two-fold Conditional Connection Pattern Recognition (TCCPR) and Component Significance Diagnostic (CSD) models. Initially, the likely environmental factors that could result in distribution transformer heavy overloads were incorporated into an established comprehensive evaluation database. The TCCPR model included the UHR time series and factors that are associated with heavy overload in both spatial and temporal dimensions. The CSD model was constructed to calculate the risk impact weights of each risky component straightforwardly, in line with the total risk variation levels of the whole system caused by them. Finally, the results of one empirical case study demonstrated their adaptation capability and enhanced performance when applied in complex and imbalanced multi-source data scenes.

Suggested Citation

  • Yanzheng Liu & Chenhao Sun & Xin Yang & Zhiwei Jia & Jianhong Su & Zhijie Guo, 2024. "A Transformer Heavy Overload Spatiotemporal Distribution Prediction Ensemble under Imbalanced and Nonlinear Data Scenarios," Sustainability, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3110-:d:1372337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qunli Wu & Hongjie Zhang, 2019. "A Novel Expertise-Guided Machine Learning Model for Internal Fault State Diagnosis of Power Transformers," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Santamaria-Bonfil & Gustavo Arroyo-Figueroa & Miguel A. Zuniga-Garcia & Carlos Gustavo Azcarraga Ramos & Ali Bassam, 2023. "Power Transformer Fault Detection: A Comparison of Standard Machine Learning and autoML Approaches," Energies, MDPI, vol. 17(1), pages 1-22, December.
    2. Pedro J. Zarco-Periñán & José L. Martínez-Ramos & Fco. Javier Zarco-Soto, 2021. "On the Remuneration to Electrical Utilities and Budgetary Allocation for Substation Maintenance Management," Sustainability, MDPI, vol. 13(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3110-:d:1372337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.