IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3005-d1370099.html
   My bibliography  Save this article

The Impact of Multi-Dimensional Urbanization on CO 2 Emissions: Empirical Evidence from Jiangsu, China, at the County Level

Author

Listed:
  • Jun Zhai

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
    Institute of Digital Forestry & Green Development, Nanjing Forestry University, Nanjing 210037, China)

  • Fanbin Kong

    (College of Economics and Management, Nanjing Forestry University, Nanjing 210037, China
    Institute of Digital Forestry & Green Development, Nanjing Forestry University, Nanjing 210037, China
    School of Economics and Management, Zhejiang A&F University, Hangzhou 311300, China
    Research Academy for Rural Revitalization of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China)

Abstract

Understanding the underlying mechanism of how various dimensions of urbanization affect CO 2 emissions could be helpful for achieving the goal of low-carbon cities in China. However, previous research has seldomly examined this relationship granularly in economically developed regions at the micro level, nor did they examine the mediating effects of economic development, industrial structure, and coal consumption. Using the panel dataset of 80 counties from 2002 to 2021 at the county level in Jiangsu, China, this study investigates the direct and indirect effects of population, economic, and land urbanizations on CO 2 emissions in Jiangsu province and examines the regional heterogeneity. The findings indicate that population and economic urbanization have positive impacts on CO 2 emissions, whereas land urbanization has insignificant effects. This finding is supported by various robustness tests. Population and economic urbanizations are found to have significantly positive impacts on CO 2 emissions in the southern and northern Jiangsu regions, whereas none of the three dimensions are significant in the middle Jiangsu region. Economic urbanization contributes the most to CO 2 emissions in southern Jiangsu. In addition, our results indicate that multi-dimensional urbanizations affect CO 2 emissions through the mediating roles of economic development, industrial structure, and coal consumption. Our analysis shed some insights into the nuanced relationship between multi-dimensional urbanization and carbon emissions, which could contribute to sustainable urban transformation.

Suggested Citation

  • Jun Zhai & Fanbin Kong, 2024. "The Impact of Multi-Dimensional Urbanization on CO 2 Emissions: Empirical Evidence from Jiangsu, China, at the County Level," Sustainability, MDPI, vol. 16(7), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3005-:d:1370099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azomahou, Theophile & Laisney, Francois & Nguyen Van, Phu, 2006. "Economic development and CO2 emissions: A nonparametric panel approach," Journal of Public Economics, Elsevier, vol. 90(6-7), pages 1347-1363, August.
    2. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    3. Amery Wu & Bruno Zumbo, 2008. "Understanding and Using Mediators and Moderators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 87(3), pages 367-392, July.
    4. Kaufmann, Robert K. & Davidsdottir, Brynhildur & Garnham, Sophie & Pauly, Peter, 1998. "The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 25(2), pages 209-220, May.
    5. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    6. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2019. "How does the new-type urbanisation affect CO2 emissions in China? An empirical analysis from the perspective of technological progress," Energy Economics, Elsevier, vol. 80(C), pages 917-927.
    7. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    8. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    9. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    10. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    11. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    12. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    13. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    14. Karen Ehrhardt‐Martinez & Edward M. Crenshaw & J. Craig Jenkins, 2002. "Deforestation and the Environmental Kuznets Curve: A Cross‐National Investigation of Intervening Mechanisms," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 226-243, March.
    15. Jinke, Li & Hualing, Song & Dianming, Geng, 2008. "Causality relationship between coal consumption and GDP: Difference of major OECD and non-OECD countries," Applied Energy, Elsevier, vol. 85(6), pages 421-429, June.
    16. Liu, Yaobin & Xie, Yichun, 2013. "Asymmetric adjustment of the dynamic relationship between energy intensity and urbanization in China," Energy Economics, Elsevier, vol. 36(C), pages 43-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussain Ali Bekhet & Nor Salwati Othman & Tahira Yasmin, 2020. "Interaction Between Environmental Kuznet Curve and Urban Environment Transition Hypotheses in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 384-402.
    2. Effiong, Ekpeno, 2016. "Urbanization and Environmental Quality in Africa," MPRA Paper 73224, University Library of Munich, Germany.
    3. Ekpeno L. Effiong, 2018. "On the urbanization-pollution nexus in Africa: a semiparametric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 445-456, January.
    4. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    5. George E. Halkos & Apostolos S. Tsirivis, 2023. "Electricity Production and Sustainable Development: The Role of Renewable Energy Sources and Specific Socioeconomic Factors," Energies, MDPI, vol. 16(2), pages 1-21, January.
    6. Afia Fahmida Daizy & Mobasshir Anjum & Md. Raied Arman & Tanzina Nazia & Nadir Shah, 2021. "Long-run Impact of Globalization, Agriculture, Industrialization and Electricity Consumption on the Environmental Quality of Bangladesh," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 438-453.
    7. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    8. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    9. Opoku, Eric Evans Osei & Boachie, Micheal Kofi, 2020. "The environmental impact of industrialization and foreign direct investment," Energy Policy, Elsevier, vol. 137(C).
    10. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO 2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    11. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    12. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    13. Yabo Zhao & Ruiyang Chen & Tong Sun & Ying Yang & Shifa Ma & Dixiang Xie & Xiwen Zhang & Yunnan Cai, 2022. "Urbanization Influences CO 2 Emissions in the Pearl River Delta: A Perspective of the “Space of Flows”," Land, MDPI, vol. 11(8), pages 1-21, August.
    14. Niu, Honglei & Lekse, William, 2017. "Carbon emission effect of urbanization at regional level: Empirical evidence from China," Economics Discussion Papers 2017-62, Kiel Institute for the World Economy (IfW Kiel).
    15. Arshian Sharif, Syed Ali Raza, 2016. "Dynamic Relationship between Urbanization, Energy Consumption and Environmental Degradation in Pakistan: Evidence from Structure Break Testing," Journal of Management Sciences, Geist Science, Iqra University, Faculty of Business Administration, vol. 3(1), pages 01-21, March.
    16. Yan-Qing Kang & Tao Zhao & Peng Wu, 2016. "Impacts of energy-related CO2 emissions in China: a spatial panel data technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 405-421, March.
    17. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    18. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    19. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
    20. Rafiq, Shuddhasattwa & Nielsen, Ingrid & Smyth, Russell, 2017. "Effect of internal migration on the environment in China," Energy Economics, Elsevier, vol. 64(C), pages 31-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3005-:d:1370099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.