IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2543-d1360326.html
   My bibliography  Save this article

Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China

Author

Listed:
  • Yijia Yang

    (Institute of Management Engineering, Qingdao University of Technology, Qingdao 266525, China
    Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China)

  • Xuexin Zhu

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518000, China)

Abstract

Comprehensively and objectively revealing the spatial relationship between ecosystem services (ESs) and human activity intensity (HAI) is vital for achieving sustainable development goals. However, existing studies still have an incomplete understanding of how ESs change with HAI gradients. Therefore, taking Shenzhen City, China, as an example region experiencing rapid urbanization, the distribution of ESs and HAI in 2010 and 2020 were quantified using the InVEST model and the human footprint index method; at the same time, the gradient perspective was introduced and the spatial and temporal correlation characteristics of ESs along 10 HAI gradient bands, from weak to strong, were captured by applying multiscale geographically weighted regression (MGWR) and the bivariate spatial autocorrelation model. The findings showed that (1) the HAI demonstrated an increasing trend (20.63 (2010) and 23.36 (2020)), and the area with high values of HAI (the 10th gradient band) was distributed in the western part of the study area; meanwhile, the area with low HAI values (the 1st gradient band) was more distributed in the eastern part of the study area. (2) On the whole, the average levels of water conservation, soil conservation, carbon storage, and habitat quality decreased from 2010 to 2020; the spatial distribution characteristics of these parameters were similar. (3) In general, ESs were negatively correlated with HAI, and the negative correlation ratio was more than 65%. At the same time, the spatial and temporal correlations between ES patterns and HAI under different gradient bands were significant. These findings can effectively alleviate the pressure on the ecosystem caused by human activities, which is of great significance for the sustainable development of highly urbanized regions.

Suggested Citation

  • Yijia Yang & Xuexin Zhu, 2024. "Distribution and Change Characteristics of Ecosystem Services in Highly Urbanized Areas along Gradients of Human Activity Intensity: A Case Study of Shenzhen City, China," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2543-:d:1360326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanzhao Wang & Jianfei Cao, 2023. "Examining the Effects of Socioeconomic Development on Fine Particulate Matter (PM2.5) in China’s Cities Based on Spatial Autocorrelation Analysis and MGWR Model," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    2. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    3. Hengyu Gu & Hanchen Yu & Mehak Sachdeva & Ye Liu, 2021. "Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression," Growth and Change, Wiley Blackwell, vol. 52(1), pages 443-459, March.
    4. Shichao Lu & Zhihua Zhang & M. James C. Crabbe & Prin Suntichaikul, 2024. "Effects of Urban Land-Use Planning on Housing Prices in Chiang Mai, Thailand," Land, MDPI, vol. 13(8), pages 1-13, July.
    5. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
    6. Chunfang Zhao & Yingliang Wu & Yunfeng Chen & Guohua Chen, 2023. "Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    7. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    8. Li, Mengya & Kwan, Mei-Po & Hu, Wenyan & Li, Rui & Wang, Jun, 2023. "Examining the effects of station-level factors on metro ridership using multiscale geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 113(C).
    9. Moore, David & Webb, Amanda L., 2022. "Evaluating energy burden at the urban scale: A spatial regression approach in Cincinnati, Ohio," Energy Policy, Elsevier, vol. 160(C).
    10. Jack C. Yue & Ming-Huei Tu & Yin-Yee Leong, 2024. "A spatial analysis of the health and longevity of Taiwanese people," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 384-399, April.
    11. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    12. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    13. Yongxin Liu & Yiting Wang & Yiwen Lin & Xiaoqing Ma & Shifa Guo & Qianru Ouyang & Caige Sun, 2023. "Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    14. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    15. Rémy Le Boennec & Julie Bulteau & Thierry Feuillet, 2022. "The role of commuter rail accessibility in the formation of residential land values: exploring spatial heterogeneity in peri-urban and remote areas," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 69(1), pages 163-186, August.
    16. Lu, Haiyan & Zhao, Pengjun & Hu, Haoyu & Zeng, Liangen & Wu, Kai Sheng & Lv, Di, 2022. "Transport infrastructure and urban-rural income disparity: A municipal-level analysis in China," Journal of Transport Geography, Elsevier, vol. 99(C).
    17. Junfeng Wang & Shaoyao Zhang & Wei Deng & Qianli Zhou, 2024. "Metropolitan Expansion and Migrant Population: Correlation Patterns and Influencing Factors in Chengdu, China," Land, MDPI, vol. 13(1), pages 1-19, January.
    18. Wang, Jiaoe & Xiao, Fan & Dobruszkes, Frédéric & Wang, Wei, 2023. "Seasonality of flights in China: Spatial heterogeneity and its determinants," Journal of Air Transport Management, Elsevier, vol. 108(C).
    19. Xin Lao & Hengyu Gu, 2020. "Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi‐scale geographically weighted regression approach," Growth and Change, Wiley Blackwell, vol. 51(4), pages 1860-1876, December.
    20. Huxiao Zhu & Xiangjun Ou & Zhen Yang & Yiwen Yang & Hongxin Ren & Le Tang, 2022. "Spatiotemporal Dynamics and Driving Forces of Land Urbanization in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(8), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2543-:d:1360326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.