IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2341-d1355503.html
   My bibliography  Save this article

Research on the Dynamic Model of Emergency Rescue Resource-Allocation Systems for Mine-Fire Accidents, Taking Liquid CO 2 Transportation as an Example

Author

Listed:
  • Rongshan Nie

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

  • Zhen Wang

    (College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China)

Abstract

After a mine-fire accident occurs, a large number of emergency resources need to be allocated to rescue those involved in the mine-fire accident. The allocation of emergency resources for mine-fire accidents has the characteristic of being a complex system with strong uncertainty. To investigate the impact of various variables on the allocation of emergency resources in mine-fire situations, this paper analyzes the relevant factors that influence the process of allocating emergency resources during mine fires. It defines the variables of the mine-fire emergency resource-allocation system based on relevant assumptions. Causal loop and stock flow diagrams are drawn to illustrate the relationships between the variables and the system dynamics equation. Finally, a system dynamics model for mine-fire emergency resource allocation is established. The Vensim software was used to simulate the model of a mine-fire emergency rescue. The simulation produced curves for the evolution rate of the fire, the arrival rate, the demand for emergency resources, in-transit resources, arrival, and the usage of resources during the emergency. The results indicate a positive correlation between the quantity of emergency resources in-transit and the arrival rate of emergency resources: they are positively correlated with the amount of emergency-management investment. Additionally, the duration of the maximum quantity of emergency resources in-transit is positively correlated with the length of the emergency resource-allocation route. On the other hand, the evolution rate of the mine fire and the arrival rate of its emergency resources are negatively correlated with the level of emergency management. The evolution rate of the mine fire becomes larger and the damage caused by the mine-fire accident is greater when the decision-making ability of commanders is at a low level.

Suggested Citation

  • Rongshan Nie & Zhen Wang, 2024. "Research on the Dynamic Model of Emergency Rescue Resource-Allocation Systems for Mine-Fire Accidents, Taking Liquid CO 2 Transportation as an Example," Sustainability, MDPI, vol. 16(6), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2341-:d:1355503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Wang & Shuguang Jiang & Xiaoping Ma & Zhengyan Wu & Hao Shao & Weiqing Zhang & Chuanbo Cui, 2016. "Numerical simulation and application study on a remote emergency rescue system during a belt fire in coal mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1463-1485, November.
    2. Xiaojuan Li & Weibin Chen & Chen Wang & Mukhtar A. Kassem, 2022. "Study on Evacuation Behavior of Urban Underground Complex in Fire Emergency Based on System Dynamics," Sustainability, MDPI, vol. 14(3), pages 1-33, January.
    3. Tzu Yang Loh & Mario P. Brito & Neil Bose & Jingjing Xu & Kiril Tenekedjiev, 2020. "Fuzzy System Dynamics Risk Analysis (FuSDRA) of Autonomous Underwater Vehicle Operations in the Antarctic," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 818-841, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiuk Yi & Minsik Kim & Dongkil Lee & Jongmyung Park, 2022. "Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development," Energies, MDPI, vol. 15(22), pages 1-24, November.
    2. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).
    3. Johansen, Thomas & Blindheim, Simon & Torben, Tobias Rye & Utne, Ingrid Bouwer & Johansen, Tor Arne & Sørensen, Asgeir J., 2023. "Development and testing of a risk-based control system for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Kim, Yongeun & Lee, Minyoung & Hong, Jinsol & Lee, Yun-Sik & Wee, June & Cho, Kijong, 2024. "Development of a fuzzy logic-embedded system dynamics model to simulate complex socio-ecological systems," Ecological Modelling, Elsevier, vol. 493(C).
    5. Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Ying Zhang & Rumeng Tian & Lei Peng & Xiaoxia Yu & Yan Wang, 2023. "Fire Safety Resilience Assessment of Residential Self-Built Houses according to the TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2341-:d:1355503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.