IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2315-d1355035.html
   My bibliography  Save this article

Examining the Long-Run and Short-Run Relationship between Water Demand and Socio-Economic Explanatory Variables: Evidence from Amman

Author

Listed:
  • Dua’a B. Telfah

    (Department of Civil Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Aiman Q. Jaradat

    (Department of Civil Engineering, Yarmouk University, Irbid 21163, Jordan)

  • Rabah Ismail

    (Department of Civil Engineering, Jadara University, Irbid 21110, Jordan)

Abstract

This study investigates the key factors that influence household water usage in Amman, Jordan, with the aim of improving water management practices in a region facing significant scarcity. The research focuses on factors such as temperature, water pricing, system input, and family size. The Vector Error Correction Model with Exogenous Variables (VECMX) is applied to data from 1980 to 2015 to provide insights into consumption patterns, both in the short-term and long-term. The results show that family size and marginal costs significantly impact long-term water demand, while system input and family size influence short-term water demand. The study also finds that water pricing has a limited impact on consumer behavior, indicating inelasticity. Temperature and income, however, did not emerge as significant determinants. These findings highlight the need for water management policies in arid areas like Amman to prioritize factors other than price, such as household size and water infrastructure, to establish more effective strategies for conserving water.

Suggested Citation

  • Dua’a B. Telfah & Aiman Q. Jaradat & Rabah Ismail, 2024. "Examining the Long-Run and Short-Run Relationship between Water Demand and Socio-Economic Explanatory Variables: Evidence from Amman," Sustainability, MDPI, vol. 16(6), pages 1-23, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2315-:d:1355035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustofa Usman & Luvita Loves & Edwin Russel & Muslim Ansori & Warsono Warsono & Widiarti Widiarti & Wamiliana Wamiliana, 2022. "Analysis of Some Energy and Economics Variables by Using VECMX Model in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 91-102, March.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    4. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
    5. Céline Nauges & Alban Thomas, 2003. "Long-run Study of Residential Water Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 25-43, September.
    6. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    7. Antonio Musolesi & Mario Nosvelli, 2007. "Dynamics of residential water consumption in a panel of Italian municipalities," Applied Economics Letters, Taylor & Francis Journals, vol. 14(6), pages 441-444.
    8. Hemesiri Kotagama & Slim Zekri & Rahma Al Harthi & Houcine Boughanmi, 2017. "Demand function estimate for residential water in Oman," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 907-916, November.
    9. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    10. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    11. Michael L. Nieswiadomy & David J. Molina, 1991. "A Note on Price Perception in Water Demand Models," Land Economics, University of Wisconsin Press, vol. 67(3), pages 352-359.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    2. Joachim Schleich & Thomas Hillenbrand, 2019. "Residential water demand responds asymmetrically to rising and falling prices," Applied Economics, Taylor & Francis Journals, vol. 51(45), pages 4973-4981, September.
    3. Schleich, Joachim & Hillenbrand, Thomas, 2019. "Water demand responds asymmetrically to rising and falling prices," Working Papers "Sustainability and Innovation" S03/2019, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    5. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
    6. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    7. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    8. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    9. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    10. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    11. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
    12. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    13. D. Manouseli & B. Anderson & M. Nagarajan, 2018. "Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 433-447, January.
    14. Fullerton, Thomas M., Jr. & Ceballos, Alejandro & Walke, Adam G., 2015. "Short-Term Forecasting Analysis for Municipal Water Demand," MPRA Paper 78259, University Library of Munich, Germany, revised 04 Aug 2015.
    15. David Hoyos & Alaitz Artabe, 2017. "Regional Differences in the Price Elasticity of Residential Water Demand in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 847-865, February.
    16. Wilton Bernardino & João B. Amaral & Nelson L. Paes & Raydonal Ospina & José L. Távora, 2022. "A statistical investigation of a stock valuation model," SN Business & Economics, Springer, vol. 2(8), pages 1-25, August.
    17. Brittle, Shane, 2009. "Ricardian Equivalence and the Efficacy of Fiscal Policy in Australia," Economics Working Papers wp09-10, School of Economics, University of Wollongong, NSW, Australia.
    18. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    19. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
    20. Esra N. Kılcı & Burcu Kıran Baygın, 2019. "Analysis of the Relationship between Real Effective Exchange Rate, Common Equity Tier 1 Ratio and Return on Equity: Evidence from Turkey," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 319-332, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2315-:d:1355035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.