IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i6p2274-d1353869.html
   My bibliography  Save this article

Numerical Simulation of Storm Surge Inundation in Estuarine Area Considering Multiple Influencing Factors

Author

Listed:
  • Cifu Fu

    (National Marine Environmental Forecasting Center, Beijing 100081, China
    Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Beijing 100081, China)

  • Qiuxing Liu

    (National Marine Environmental Forecasting Center, Beijing 100081, China
    Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Beijing 100081, China)

  • Yi Gao

    (National Marine Environmental Forecasting Center, Beijing 100081, China
    Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Beijing 100081, China)

  • Haijin Cao

    (Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Beijing 100081, China
    College of Oceanography, Hohai University, Nanjing 210024, China)

  • Sendong Liang

    (National Marine Environmental Forecasting Center, Beijing 100081, China
    Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Beijing 100081, China)

Abstract

With global climate change, the risk of extreme storms and storm surges in estuarine areas is increasing; thus, storm surge inundation research and prediction have become important issues to ensure sustainable development in estuarine areas. The Jitimen estuary in Guangdong Province, China, was chosen as our study area. In this study, a numerical model for simulating storm surge inundation in small regions based on unstructured triangular grids was established, and the model accuracy was validated. The typhoon characteristics in the study area were statistically analyzed based on historical data. Three experimental schemes, involving factors influencing storm surge inundation, such as typhoon landfall location, intensity, and direction, were used to evaluate the differences in the numerical results. The results showed that when the typhoon landfall direction remained unchanged and the highest tide levels at the Sanzao tide gauge station were similar, the differences between the numerical results for the typhoon landfall location and typhoon intensity schemes were less than 5%, and the inundation characteristics were similar. However, when the typhoon location and intensity were unchanged and the highest tide levels at the Sanzao tide gauge station were similar, the numerical results for the typhoon landfall direction scheme significantly differed; this result was caused by the difference in the duration of the high tide level (exceeding 3 m); these results indicated that the topographic characteristics and the typhoon landing direction had a greater impact on storm surge inundation. The results from this study can aid in the prediction of storm surge inundation information for the Jitimen estuary area when the typhoon landing direction and the maximum tide level are known.

Suggested Citation

  • Cifu Fu & Qiuxing Liu & Yi Gao & Haijin Cao & Sendong Liang, 2024. "Numerical Simulation of Storm Surge Inundation in Estuarine Area Considering Multiple Influencing Factors," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2274-:d:1353869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/6/2274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/6/2274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albert Parker, 2013. "Sea level trends at locations of the United States with more than 100 years of recording," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 1011-1021, January.
    2. Xiang Fu & Jingming Hou & Qiuuxing Liu & Mingjie Li & Sendong Liang, 2023. "Evaluation of surge hazard based on a storm surge hazard indicator along the mainland coast of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3481-3493, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parker Albert, 2016. "Coldspot of Decelerated Sea-Level Rise on the Pacific Coast of North America," Quaestiones Geographicae, Sciendo, vol. 35(3), pages 31-37, September.
    2. Parker Albert & Ollier Clifford, 2019. "Pacific Sea Levels Rising Very Slowly and Not Accelerating," Quaestiones Geographicae, Sciendo, vol. 38(1), pages 179-184, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:6:p:2274-:d:1353869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.