IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2150-d1351469.html
   My bibliography  Save this article

Impact of Thermal Pretreatment on the Physicochemical Characteristics and Biomethane Yield Potential of Solid Slaughter Waste from High-Throughput Red Meat Abattoirs Valorized as a Potential Feedstock for Biogas Production

Author

Listed:
  • Dikonketso Shirleymay Matjuda

    (Agricultural Research Council, Old Olifantsfontein Road, Private Bag X2, Irene 0062, Gauteng, South Africa)

  • Memory Tekere

    (Department of Environmental Science, College of Agriculture and Environmental Sciences (CAES), University of South Africa, P.O. Box 392, Florida 1710, Gauteng, South Africa)

  • Mary-Jane Thaela-Chimuka

    (Agricultural Research Council, Old Olifantsfontein Road, Private Bag X2, Irene 0062, Gauteng, South Africa)

Abstract

Rapid urbanization worldwide results in high demand for meat products, which in turn result in high numbers of animals being slaughtered for human consumption to meet food security demands, especially in low-income countries such as South Africa. The waste produced during slaughtering can serve as feedstock for biogas production. This study aims to determine the impacts of pasteurization and sterilization pre-treatments on high-throughput red meat abattoir solid slaughter waste’s physicochemical properties and biomethane yield when used as a feedstock for biogas production. Abattoir solid slaughter waste was collected from 45 high-throughput red meat abattoirs across South Africa and the various physicochemical properties were determined using standard methods, along with the impact of sterilization and pasteurization on red meat abattoir waste. Biomethane yield analysis was performed using AMPTS II with a hydraulic retention time of 40 days. Pasteurization and sterilization pretreatment was seen to increase physicochemical parameters such as pH, volatile solids, total solids, carbon, and nitrogen analyzed in all samples. Pasteurization and sterilization were also seen to increase biomethane yield, where methane production ranged from 610.67 Nml to 1756.30 Nml, 1592.20 Nml to 3319.30 Nml, and 949.57 Nml to 3297.87 Nml for untreated, sterilized, and pasteurized samples, respectively. There was no significant difference ( p < 0.05) observed in the effect pasteurized and sterilized samples had on physicochemical properties and biomethane yield. It can be concluded that pasteurization and sterilization enhance the bioavailability of the physicochemical properties and biomethane yield of red meat solid slaughter waste when valorized as feedstock for biogas production.

Suggested Citation

  • Dikonketso Shirleymay Matjuda & Memory Tekere & Mary-Jane Thaela-Chimuka, 2024. "Impact of Thermal Pretreatment on the Physicochemical Characteristics and Biomethane Yield Potential of Solid Slaughter Waste from High-Throughput Red Meat Abattoirs Valorized as a Potential Feedstock," Sustainability, MDPI, vol. 16(5), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2150-:d:1351469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    2. Ortner, Markus & Wöss, David & Schumergruber, Alexander & Pröll, Tobias & Fuchs, Werner, 2015. "Energy self-supply of large abattoir by sustainable waste utilization based on anaerobic mono-digestion," Applied Energy, Elsevier, vol. 143(C), pages 460-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garcia, Natalia Herrero & Mattioli, Andrea & Gil, Aida & Frison, Nicola & Battista, Federico & Bolzonella, David, 2019. "Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 1-10.
    2. Alessandro Neri & Bruno Bernardi & Giuseppe Zimbalatti & Souraya Benalia, 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production," Energies, MDPI, vol. 16(19), pages 1-20, September.
    3. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    4. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    5. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Liu, Yueling & Feng, Kai & Li, Huan, 2019. "Rapid conversion from food waste to electricity by combining anaerobic fermentation and liquid catalytic fuel cell," Applied Energy, Elsevier, vol. 233, pages 395-402.
    7. Tasnia Hassan Nazifa & Noori M. Cata Saady & Carlos Bazan & Sohrab Zendehboudi & Adnan Aftab & Talib M. Albayati, 2021. "Anaerobic Digestion of Blood from Slaughtered Livestock: A Review," Energies, MDPI, vol. 14(18), pages 1-26, September.
    8. Spence, Jennifer & Buttsworth, David & McCabe, Bernadette K. & Baillie, Craig & Antille, Diogenes L. & Carter, Brad, 2018. "Investigation into thin layer drying rates and equilibrium moisture content of abattoir paunch waste," Renewable Energy, Elsevier, vol. 124(C), pages 95-102.
    9. Grosser, A. & Neczaj, E. & Jasinska, Anna & Celary, P., 2020. "The influence of grease trap sludge sterilization on the performance of anaerobic co-digestion of sewage sludge," Renewable Energy, Elsevier, vol. 161(C), pages 988-997.
    10. Gahyun Baek & Danbee Kim & Jinsu Kim & Hanwoong Kim & Changsoo Lee, 2020. "Treatment of Cattle Manure by Anaerobic Co-Digestion with Food Waste and Pig Manure: Methane Yield and Synergistic Effect," IJERPH, MDPI, vol. 17(13), pages 1-13, July.
    11. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    13. Guangxin Ren & Chunlan Mao & Ningning Zhai & Boran Wang & Zhichao Liu & Xiaojiao Wang & Gaihe Yang, 2019. "A New Adjustment Strategy to Relieve Inhibition during Anaerobic Codigestion of Food Waste and Cow Manure," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    14. Tao, Bing & Zhang, Yue & Heaven, Sonia & Banks, Charles J., 2020. "Predicting pH rise as a control measure for integration of CO2 biomethanisation with anaerobic digestion," Applied Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2150-:d:1351469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.